P-pppp/…	Testo dedicato a formula di riservatezza e divulgazione del documento	Pagina 5 di 78

	
	UNCLASSIFIED
	

	P50638/BUSSUS-0011-11
	OPGW – Software Design Document
for HMA Follow On Task4 - Order
	Page 73 of 79

P50638/BUSSUS-000811-11
28 Jan, 2011

CONTRACT N. ESA/ESRIN 22508/09/I-LG

OPGW SOFTWARE DESIGN DOCUMENT
 FOR HMA FOLLOW ON TASK 4 – ORDER

	SUMMARY
This document provides description of the software architectural design, the software detailed design and the internal interface design of the Ordering & Programming Gateway (OPGW) component that is in charge of providing the implementation of the Order Server required in HMA Follow On Task 4 – Order.

[image:]

 (
Document not published. Copyright
Telespazio
 spa. All rights reserved.
The contents of this document are property of
Telespazio
 spa and are made available without any responsibility for errors and omissions. No part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior permission in writing from Elsag Datamat spa.
)
ELSAG DATAMAT[image: FlashUno] Copyright – Indicazione su prima pagina

	Prepared by:
	Daniele MARCHIONNI Stefania PAPPAGALLO

	Certifies that the current document was prepared analyzing input documents and standards applicable to the project; cooperated with reference roles (OBS) reporting to a technical responsible.
	(Technical Leader)

	Verified by:
	Daniele MARCHIONNI

	Certifies: consistency and completeness of the content with respect to contract and company/divisional procedures and other outputs generated by previous phases; the correspondence to applicable standards; absence of orthographic and typographical errors.
	(Project Manager)

	Technical Approval:
	Daniele MARCHIONNI

	Certifies validity of technical decisions and document coherence with both upper-level documentation and documents correlated to the expected project phase.
	(Project Manager)

	Quality Approval:
	Raffaele BARBATI

	Certifies that: document complies with defined requirements; the process which generated it was performed as foreseen; quality records exist for the quality activities performed; any action generated was closed.
	(SPA Manager)

	Authorized by:
	Mario FONTI

	Certifies that the document complies with directives and constraints set by Purchaser and that any possible commitment arisen by document is compatible with project constraints; authorizes usage and distribution.
	(SW Engineering Manager)

	Distribution

	Pier Giorgio MARCHETTI – ESA

	Yves COENE – Spacebel

	Uwe VOGES – con terra

Release and Edition Register
	Edition
	Release
	Date
	Amendments description
	Author

	1
	 -
	
	 First Issue
	S. Pappagallo

	1
	1
	25/06/2010
	Update after PR review
	D. Marchionni

	1
	2
	28/01/2011
	Updated for AR
	D. Marchionni

TABLE OF CONTENTS
1	Introduction	12
2	Applicable and Reference documents	13
3	Terms, definition and abbreviations terms	15
4	Software Design Overview	17
4.1	Software static architecture	17
4.1.1	Components Overview	17
4.1.2	Relationship with other systems	18
4.1.3	Information Model Overview	19
4.1.3.1	Order Options Model	19
4.1.3.2	Order Model	21
4.1.3.3	User Profile Overview	22
4.2	Software dynamic architecture	23
4.3	Interfaces Context	23
4.3.1	OPGW vs. HMA Client (Input Interfaces)	26
4.3.1.1	HMA Ordering::GetCapabilities [Discrete flow]	26
4.3.1.2	HMA Ordering::GetOptions [Discrete flow]	26
4.3.1.3	HMA Ordering::Submit [Discrete flow]	26
4.3.1.4	HMA Ordering::GetStatus [Discrete flow]	27
4.3.1.5	HMA Ordering::Cancel [Discrete flow]	27
4.3.1.6	HMA Ordering::GetQuotation [Discrete flow]	27
4.3.1.7	HMA Ordering::DescribeResultAccess [Discrete flow]	28
4.3.1.8	key exchange [Control flow]	28
4.3.2	OPGW vs. HMA Client (Output Interfaces)	28
4.3.2.1	HMA Ordering::SubmitResponse [Discrete flow]	28
4.3.3	OPGW vs. EOLI XML Order Server (Input Interfaces)	29
4.3.4	OPGW vs. EOLI XML Order Server (Output Interfaces)	29
4.3.4.1	EOLI XML Order::processProductOrderRequest [Discrete flow]	29
4.3.4.2	EOLI XML Order::processOrderMonitorRequest [Discrete flow]	29
4.3.5	OPGW vs. OPGW Operator (Input Interfaces)	29
4.3.5.1	ServiceDirectory.xml [Discrete flow]	29
4.3.5.2	Users_YYYYMMDD_HHMMSS.xml [Discrete flow]	30
4.4	Long lifetime software	30
4.5	Memory and CPU budget	30
4.6	Design Standards, conventions and procedures	30
4.6.1	UML Notations	31
4.6.1.1	Deployment Diagrams Notations	31
4.6.1.2	Component Diagrams Notations	32
4.6.1.3	Class Diagrams Notations	33
4.6.1.4	Sequence Diagrams Notations	37
4.6.2	Data Flow Diagrams Notations	37
4.6.3	Database Schema Notations	38
5	Software Design	39
5.1	General	39
5.2	Overall architecture	39
5.2.1	Components overview	39
5.3	Software components design - General	41
5.4	Software components design – Aspect of each component	42
5.4.1	OPGW_OSEO_AxisService	42
5.4.1.1	Type	42
5.4.1.2	Purpose	42
5.4.1.3	Function	42
5.4.1.4	Subordinates	42
5.4.1.5	Dependencies	43
5.4.1.6	Interfaces	43
5.4.1.7	Resources	43
5.4.1.8	References	43
5.4.1.9	Processing	43
5.4.1.10	Data	43
5.4.2	OPGW_Core	44
5.4.2.1	Type	48
5.4.2.2	Purpose	48
5.4.2.3	Function	48
5.4.2.4	Subordinates	48
5.4.2.5	Dependencies	48
5.4.2.6	Interfaces	48
5.4.2.7	Resources	49
5.4.2.8	References	49
5.4.2.9	Processing	49
5.4.2.10	Data	49
5.4.3	OPGW_Common	50
5.4.3.1	Type	50
5.4.3.2	Purpose	50
5.4.3.3	Function	50
5.4.3.4	Subordinates	50
5.4.3.5	Dependencies	50
5.4.3.6	Interfaces	50
5.4.3.7	Resources	51
5.4.3.8	References	51
5.4.3.9	Processing	51
5.4.3.10	Data	51
5.4.4	OPGW_ImportUsers	52
5.4.4.1	Type	52
5.4.4.2	Purpose	52
5.4.4.3	Function	52
5.4.4.4	Subordinates	52
5.4.4.5	Dependencies	52
5.4.4.6	Interfaces	52
5.4.4.7	Resources	52
5.4.4.8	References	52
5.4.4.9	Processing	52
5.4.4.10	Data	52
5.4.5	OPGW_CheckOrder	53
5.4.5.1	Type	53
5.4.5.2	Purpose	53
5.4.5.3	Function	53
5.4.5.4	Subordinates	53
5.4.5.5	Dependencies	53
5.4.5.6	Interfaces	53
5.4.5.7	Resources	54
5.4.5.8	References	54
5.4.5.9	Processing	54
5.4.5.10	Data	54
5.4.6	OPGW_SchemaLib	55
5.4.6.1	Type	55
5.4.6.2	Purpose	55
5.4.6.3	Function	55
5.4.6.4	Subordinates	55
5.4.6.5	Dependencies	55
5.4.6.6	Interfaces	55
5.4.6.7	Resources	56
5.4.6.8	References	56
5.4.6.9	Processing	56
5.4.6.10	Data	56
5.4.7	HSQL DB	57
5.4.7.1	Type	57
5.4.7.2	Purpose	57
5.4.7.3	Function	58
5.4.7.4	Subordinates	58
5.4.7.5	Dependencies	58
5.4.7.6	Interfaces	58
5.4.7.7	Resources	58
5.4.7.8	References	58
5.4.7.9	Processing	58
5.4.7.10	Data	58
5.4.8	OPGW_SecurityLayer	59
5.4.8.1	Type	59
5.4.8.2	Purpose	59
5.4.8.3	Function	59
5.4.8.4	Subordinates	59
5.4.8.5	Dependencies	59
5.4.8.6	Interfaces	59
5.4.8.7	Resources	60
5.4.8.8	References	60
5.4.8.9	Processing	60
5.4.8.10	Data	60
5.4.9	extractProductMapping.py	61
5.4.9.1	Type	61
5.4.9.2	Purpose	61
5.4.9.3	Function	61
5.4.9.4	Subordinates	61
5.4.9.5	Dependencies	61
5.4.9.6	Interfaces	61
5.4.9.7	Resources	61
5.4.9.8	References	61
5.4.9.9	Processing	61
5.4.9.10	Data	61
5.4.10	OPGW Test Kit	62
5.4.10.1	Type	63
5.4.10.2	Purpose	63
5.4.10.3	Function	63
5.4.10.4	Subordinates	64
5.4.10.5	Dependencies	64
5.4.10.6	Interfaces	64
5.4.10.7	Resources	64
5.4.10.8	References	64
5.4.10.9	Processing	65
5.4.10.10	Data	65
5.5	Dynamical Model	66
5.5.1	Identity Management Scenario	66
5.5.2	Product Ordering Scenario	67
5.5.3	Configuration Scenario	69
5.5.4	Asynchronous operations	69
5.6	Internal Interfaces design	70
5.6.1	activate OSEO_ServiceCore class	70
5.6.1.1	Type	70
5.6.1.2	Description	70
5.6.2	key	70
5.6.2.1	Type	70
5.6.2.2	Description	70
5.6.3	decrypt SAML Token	70
5.6.3.1	Type	70
5.6.3.2	Description	70
5.6.4	encrypt SAML Token	71
5.6.4.1	Type	71
5.6.4.2	Description	71
5.6.5	create signature	71
5.6.5.1	Type	71
5.6.5.2	Description	71
5.6.6	verify signature	71
5.6.6.1	Type	71
5.6.6.2	Description	71
5.6.7	key	71
5.6.7.1	Type	71
5.6.7.2	Description	71
5.6.8	JDBC access	71
5.6.8.1	Type	71
5.6.8.2	Description	71
5.6.9	Order Capabilities File	72
5.6.9.1	Type	72
5.6.9.2	Description	72
5.6.10	productMapping.xml	72
5.6.10.1	Type	72
5.6.10.2	Description	72
5.6.11	Read Order Database	72
5.6.11.1	Type	72
5.6.11.2	Description	72
5.6.12	Read User Database	72
5.6.12.1	Type	72
5.6.12.2	Description	72
5.6.13	Update Order Database	72
5.6.13.1	Type	72
5.6.13.2	Description	72
5.6.14	Update User Database	73
5.6.14.1	Type	73
5.6.14.2	Description	73
6	Requirements to design components traceability	74

Index of Figures
Figure 4‑1: OPGW Component Diagram.	18
Figure 4‑2: Order Option Model.	20
Figure 4‑3: Order Model.	21
Figure 4‑4: User profile model.	23
Figure 4‑5: OPGW Context Diagram.	24
Figure 4‑6: Deployment Diagram Notations	32
Figure 4‑7: Component Diagram Notations	33
Figure 4‑8: Class Diagram Notations.	36
Figure 4‑9: Sequence Diagram Notations	37
Figure 4‑10: Data Flow Diagram Notations	38
Figure 4‑11: Database Schemas Notations	38
Figure 5‑1: OPGW First level decomposition.	40
Figure 5‑3: OPGW Test Kit architecture.	63
Figure 5‑4: General Handling of HMA requests scenario.	66
Figure 5‑5: EO Products ordering scenario	68
Figure 5‑6: OPGW Configuration scenario.	69

Index of Tables
Table 2‑1: Applicable Documents	13
Table 2‑2: Reference Documents	14
Table 3‑1: Acronyms and definitions	16
Table 6‑1: OPGW Software Requirements vs. OPGW Software Components traceability matrix.	76
Table 6‑2: OPGW Software Components vs. OPGW Software Requirements traceability matrix.	79

[bookmark: _Toc245190775][bookmark: _Toc284347431]Introduction
This document defines the architectural design of the ESA G/S Ordering & Programming Gateway – OPGW system that is the Order Server implementation required in HMA Follow On Task 4 – Order. OPGW provides the Ordering Service (OGC 06-141r5) via generating calls to appropriate back-end servers (EOLI XML Ordering Server).
This document will be updated during the HMA Follow-on project for taking into account the updates on HMA Ordering ICD that will be performed in the OGC SWG.
OPGW system is in charge of providing the following main functionalities:
· Checking the identity of the issuer of the requests according to the DAIL UM ICD [AD-11];
· Supporting the HMA Ordering ICD to return ordering options, to submit or cancel product orders (supporting possible asynchronous notification), to perform order monitoring.
The role of the OPGW is to anticipate the support for HMA Interfaces within the ESA User Service before the implementation within the ESA User Services operational systems.

[bookmark: _Toc95763032][bookmark: _Toc245190776][bookmark: _Toc284347432]
Applicable and Reference documents
The following table provide list of applicable documents:

	Id.
	Title
	Reference
	Issue
	Date

	[bookmark: _Ref251683669]
	EARTHNET ONLINE XML FRONT-END
INTERFACE CONTROL DOCUMENT
	EOLI-XML-006-ICD
	2.8
	21 Jan 2008

	[bookmark: _Ref251683670]
	OGC™ Catalogue Services Specification 2.0 Extension Package for ebRIM (ISO/TS 15000-3) Application Profile: Earth Observation Products
	OGC 06-131r6
	0.2.4
	07 May 2008

	
	Application schema for Earth Observation products
	0GC 06-080r2
	0.9.3
	21 Jul 2008

	
	ECSS – Space engineering – Software
	ECSS-E-ST-40C
	
	06 Mar 2009

	[bookmark: _Ref251683756]
	Ordering Services for Earth Observation Products
	OGC 06-141r52
	0.9.85
	02 10 JanJul 2010

	[bookmark: _Ref251683887]
	EARTHNET ONLINE XML FRONT-END: ORDER AND ON-LINE ACCESS EXTENSION
INTERFACE CONTROL DOCUMENT
	EOLI/Order-XML-ICD
	3.4
	07 Apr 2008

	[bookmark: _Ref251683982]
	OPGW Software Requirements Specification Document
	P50638/BUSSUS-0010-11P50638/DSASGT-0082-10/00
	1.21
	25 28 Junan 20110

	
	Proposal for HMA Follow On Task 4 – Order
	EF000D135/DSASGT-
0501-09
	1.0
	13 Mar 2009

	[bookmark: _Ref251684124]
	Multi Mission User Information Services

MMOHS/UMS XML ICD,
UMS Import/Export XML ICD
	UMS-MMOHS-XML-ICD
	1.2
	31 May 2006

	
	M2AS MMOHS IMPORT/EXPORT XML ICD
	OSME-USMP-SEDA-IS-08-2059
	1.1
	21 Nov 2008

	[bookmark: _Ref251928005]
	User Management Interfaces for Earth Observation Services
	OGC 07-118r4
	0.0.6
	29 Jan 2010

	
	SOFTWARE DEVELOPMENT PLAN FOR HMA FOLLOW ON TASK 4 – ORDER
	P50638/DSASGT-2995-09/00
	1.0
	20 Nov 2009

	
	SOFTWARE PRODUCT ASSURANCE PLAN FOR HMA FOLLOW ON TASK 4 – ORDER
	P-P50638/DSAQUD-3046-09/00
	1.0
	20 Nov 2009

[bookmark: _Toc284347758]Table 2‑1: Applicable Documents

The following table provide list of reference documents:

	Id.
	Title
	Reference
	Issue
	Date

	[bookmark: _Ref251682255]
	HSQLDB Web Site
	http://www.hsqldb.org/
	
	

	[bookmark: _Ref251682873]
	Prototype Operations Concept
	HMA-PR-SPB-EN-0001
	1.0
	12 Aug 2006

	[bookmark: _Ref251683048]
	EOLI-SA Configuration File Interface Control Document
	VEGA.EOLI-SA.ICD.042
	1.17
	16 Apr 2008

	
	GS implementation of the Catalogue, Ordering and Programming ICD’s TN
	HMA-RP-ASU-PM-0001
	
	

	
	ESA/GS HMA Prototipe Software Specification Document
	HMA-RS-DAT-EN-001
	2.2
	17 Oct 2007

	[bookmark: _Ref251812170]
	Apache XML Security
	http://santuario.apache.org/Java/index.html
	
	

[bookmark: _Toc95763034][bookmark: _Toc245190777][bookmark: _Toc284347759]Table 2‑2: Reference Documents
[bookmark: _Toc284347433]
Terms, definition and abbreviations terms
	Acronym
	Definition

	API
	Application Programmer’s Interface

	AR
	Acceptance Review

	ASCII
	American Standard for Code Information Interchange

	ASN.1
	Abstract Syntax Notation One

	BNF
	Backus-Naur Form

	CDR
	Critical Design Review

	CM
	Contributing Mission

	COTS
	Commercial off-the-shelf

	DAIL
	Data Access Integration Layer

	DAP
	Data Access Portfolio

	DB
	Database

	EO-A
	Enhanced On-line Access

	EOLI
	Earthnet On-line Interactive

	EoliSA
	Earthnet On-line Interactive and Stand-Alone Client: main user interface to the catalogue and ordering on-line services

	ESA
	European Space Agency

	GIP
	Gateway Interoperable Protocol

	GMES
	Global Monitoring for Environment and Security

	GSC
	GMES Space Component

	GSDR
	Ground Segment Design Review

	GSOV
	Ground Segment Operation Validation.

	HMA
	Heterogeneous Mission Accessibility

	HMA Order
	Synonym for OSEO - Ordering Service for Earth Observation products

	ICD
	Interface Control Document

	IDS
	Inventory Data Server

	LTA
	Long term Archive

	M2EOS
	Multi Mission Earth Observation Services

	M2AS
	Multi Mission authorization Service

	M2BS
	Multi Mission Browse Server

	M2CS
	Multi Mission Catalogue Server

	MMFI
	Multi Mission Facility Infrastructure

	MMMC
	Multi Mission Master Catalogue

	MMOHS
	Multi-Mission Order Handling System

	MTA
	Medium Term Archive

	MUIS
	Multi-Mission User information Services

	N/A
	Not Applicable

	NRT
	Near Real Time

	OFS
	Order Front-End Server

	OMT
	Object Modelling Technique

	OPGW
	ESA G/S Ordering and Programming Gate-Way

	OR
	Operational qualification Review

	OSEO
	Ordering Service for Earth Observation products

	OSME
	Operational Support, Maintenance and Evolution Contract

	PBS
	Product Browse System

	PDR
	Preliminary Design Review

	PDS
	Payload Data Segment

	PFD
	Product Formatting and Delivery (MMFI Facility)

	POMS
	Polar Orbit Mission Server

	SDS
	Service Directory Server

	SEDA
	Serco / Elsag Datamat Consortium

	SFE
	SOAP Front End

	SOAP
	Simple Object Access Protocol

	SWG
	Standard Working Group

	TBC
	To Be Confirmed

	TBD
	To Be Defined

	TBW
	To Be Written

	TCP
	Transmission Control Protocol

	UML
	Unified Modelling Language

	UMS
	User Management System

	USMP
	User Services & Mission Planning

	WSM
	ORACLE Web Service Manager

[bookmark: _Toc284347760]Table 3‑1: Acronyms and definitions

[bookmark: _Ref148373799][bookmark: _Toc219600785][bookmark: _Toc284347434]
Software Design Overview
This chapter provides a general overview of the system specifying:
· The context in which the system is operating
· The background of the project and relationships with other projects
· The static and dynamic architecture
· The model of the main information items handled by the system
· The notations and methodologies followed for the design of the system.

[bookmark: _Toc284347435] Software static architecture
This section reports the main components of the system, the identified relationships, the different statuses in which the system is operating and the model of the main information items handled by it.
[bookmark: _Toc284347436]Components Overview
The Ordering & Programming Gateway - OPGW system is in charge of providing a reference implementation of HMA Ordering ICD [AD-05] in order to allow the clients to exercise their implementation of that protocol.
Due to the nature of the HMA Ordering specification, OPGW has to deal with:
· user identity management including encryption and digital signature: in fact the ordering concept is tightly linked with the user profile, user accounting and delivery and then these information must be managed with the suitable level of confidentiality. The way this information is transferred between client and server is specified in HMA User Identity Management ICD [AD-11].
· Asynchronous web services operations: the ordering process is a long lasting activity and then the operations of that specification are mainly asynchronous i.e. the client triggers the task, but the corresponding job is completed after some time (e.g. planning of the new data to acquire, actual sensing of the data, processing and delivery).
· Protocol translation: the HMA ordering service is actually implemented by reformatting the request in the protocol suitable for the legacy system OPGW is connected to i.e. EOLI XML Ordering protocol [AD-06].
The following component diagram (see §4.6.1 for UML notations) shows the main software components included in OPGW:

 (
Figure
4
1
: OPGW Component Diagram.
)[image:]
Because OPGW implements the Ordering Service ICD, which is a Web Service, then it is mainly developed as a Java Web Application deployed in Tomcat. In particular, OPGW includes the following components:
· Tomcat, which is the basic infrastructure for the implementation of the HMA Ordering Web Service
· Ordering Service, which is the a java web application, developed customizing the HMA Skeleton, in charge of implementing the operations of the HMA Order Service [AD-05].
· HSQLDB, which is a light weight RDBMS written in java, that provides the storage for OPGW data i.e.: the received and submitted orders, the minimum user profile.
· ImportUsers, which is a command line Java application in charge of loading the minimal user profile information necessary for submitting an order to the EOLI XML Order server connected to OPGW.
· CheckOrders, which is a command line Java application, in charge of sending asynchronous notification to the client.

[bookmark: _Toc284347437]Relationship with other systems
OPGW has several relationships with other systems:
· SSE
The SSE (Service Support Environment) is an open, interoperable system based on widely accepted standards from W3C, OASIS, WSI and OGC. It implements a Service Oriented Architecture (SOA) facilitating access to and deployment of services and combining services using workflow technology. Services can be Ground Segment related modules such as catalogues, ordering but also external services for oil spill monitoring, fire risk, algae bloom, coordinate transformation, classification etc.
In the frame of HMA Follow-on project, SSE will be the main client of OPGW and a dedicated activity will be performed for integrating OPGW between the list of SSE connected services.
· External OGC Catalogue
The product ordering process is performed after that the client has identified the EO Product of interest , then an EBRIM Catalogue has to be properly configured and loaded in order to return to users products that OPGW is able to order. Then OPGW and this catalogue shall share the configured collections and the loaded EO Product metadata.
· M2EOS / MUIS
OPGW is not an ordering system (i.e. a system that does processing, formatting and delivery of products), but it is a gateway that translates the input request in a request that is suitable for triggering an actual ordering system.
So, OPGW will be connected to M2EOS system (the new system that will replace the MUIS, which is the system currently in operation that provides access to ESA users) via the EOLI XML Order protocol [AD-06], which is the currently operationally used protocol for ordering products.

[bookmark: _Toc284347438]Information Model Overview
In order to implement the HMA Order protocol, OPGW has to store the following information items:
· ESA GS Users minimal profile information: in fact to allow the EOLI XML Order server (MUIS/M2EOS) accepting the order request, OPGW shall provide correct credentials of an actual ESA GS user, then it has to map the user identifier specified in the input request on an ESA GS user.
· Orders: because OPGW has to support asynchronous operations dealing with the status of submitted orders, and the HMA Order protocol [AD-05] is based on a stateless protocol (HTTP), then these orders must be stored in a persistent storage: for this purpose a small order database is included in OPGW.
· Order Options: for each EO Product / collection different order options are possible then this almost static information has to be held into OPGW for being returned to the client when it discovers the available ordering options.
These information items are further described in the following sub-sections.
[bookmark: _Toc284347439]Order Options Model
Order options isare a set of combinations of allowed order option values. The issuer of the order has to choose between them and then it has to provide the needed values when submitting the order.
The picture below outlines the Order options model:
[image:]
[bookmark: _Toc284347742]Figure 4‑24‑2: Order Option Model.
Order options are required specifying the collection id and the identifier of the product to order.
The returned order options are structured in this way:
· It is an array of order option groups (OrderOption)
· Each order option group has:
· The orderOptionId: it is the name that is likely showed to the user when selecting the options for ordering from a GUI
· orderType: it specifies whether it is a product order or a subscription order
· a list of order options (OrderOptionDescription):
· orderOptionId: the identifier of the option;
· definition: it specifies whether the option is a number, or a string, or a date, etc. HMA specification allows defining every type of options (array, structures, structures with nested structures, etc.)
· identifier: it is the identifier of the product to which the option is applicable
· productDeliveryOptions: it specifies the method (e.g. mail, electronic delivery) and the media (e.g. CD, DVD)
· paymentOptions: M2EOS supports only the “project quota” as payment.
· sceneSelectionOption: it specifies whether the product can be ordered as a strip or as a scene.

[bookmark: _Toc284347440]Order Model
Order is the package prepared by the user, in which the different EO products to be purchased have to be specified providing their catalogue identifier, the processing options, the delivery options and user information needed to deliver the order (delivery address).
The picture below outlines the Order model:
[image:]
[bookmark: _Toc284347743]Figure 4‑34‑3: Order Model.
An order contains the following information:
· orderSpecification, which regroups the following attributes:
· orderReference, user defined name of the order;
· orderRemark, textual remark;
· orderType, it specifies whether it is a product order or a subscription;
· deliveryInformation, which include FTP / mail (with related deliver address);
· invoice address, specifies the address where the invoice has to be put. Commercial missions are currently not supported and then the field is always empty.
· list of orderItem, which include:
· order item id:
· either productId, which identifies the catalogue item to order;
· or subscription id, which identifies the subscription to which the user is subscribing.
· option: list of user selected options values. Several types of options can be specified: strings, numbers, enumerated strings, polygon, and times.
· sceneSelection: in case of scene order it identifies the scene on the parent product;
· deliveryMethod & packageMedium: specifies the way and the media for delivering products.

[bookmark: _Toc284347441]User Profile Overview
In order to properly fill-in the EOLI XML Order sent towards the MUIS / M2EOS, OPGW needs several information about the ESA GS user the order is accounted to:
· User identifier
· Delivery Address, it is used in case the input order does not specify this information
· User Address, it is used as delivery address in case the previous information is not available
· orderAccount: it is the main information that has to be specified: it is the account to which the order assigned and it is used for updating the quota.
The following UML class diagram describes the user profile stored in OPGW.
[image:] (
Figure
4
4
: User profile model.
)
[bookmark: _Toc284347442] Software dynamic architecture
OPGW is basically the implementation of a Web Service: in fact the HMA Order protocol [AD-05] is a service composed of several operations, each implemented with SOAP messages carried by HTTP POST. Then OPGW (or at least its server part) works providing synchronous responses to synchronous requests (HTTP) and there is not a “session” between one request and another. Then this behaviour is naturally implemented developing a Web Application on an HTTP server. In particular:
· the HTTP Server is Tomcat, commonly used Servlet container, used by many development tools (e.g. Netbeans).
· because it is widely used for this kind of applications and because it is used from the HMA Skeleton, which is the basis on which OPGW has been implemented.
· The web application is written in Java, as consequence of the selection of Tomcat which is the best solution for implementing applications dealing with Web Services, SOAP messages, XML manipulations.

However, even if the basic protocol used for carrying the messages is stateless (HTTP), the HMA Order protocol is not stateless: in fact the status of the server changes after the activation of some operations e.g.:
· when a GetQuotation is issued, the order to be quoted is stored in the system for later re-use;
· when a Submit is called, the system activates the processing, formatting and delivering of the products.
Then the status of the server must be saved and be persistent between different activation of the various Service operations. Then a DB has been included in the project. Due to the small amount of data to be managed and to the simplicity of the DB schema, then a light weight DB has been chosen: HSQLDB, an RDBMS written in java, with easy installation (just deploy a jar file) and easy usage: the DB access is done via JDBC calls.

[bookmark: _Toc251776259][bookmark: _Toc251777492][bookmark: _Toc251777695][bookmark: _Toc251777899][bookmark: _Toc251778099][bookmark: _Toc251778300][bookmark: _Toc251778500][bookmark: _Toc251778699][bookmark: _Toc251778897][bookmark: _Toc251781916][bookmark: _Toc251782121][bookmark: _Toc251783842][bookmark: _Toc251776260][bookmark: _Toc251777493][bookmark: _Toc251777696][bookmark: _Toc251777900][bookmark: _Toc251778100][bookmark: _Toc251778301][bookmark: _Toc251778501][bookmark: _Toc251778700][bookmark: _Toc251778898][bookmark: _Toc251781917][bookmark: _Toc251782122][bookmark: _Toc251783843][bookmark: _Toc251776261][bookmark: _Toc251777494][bookmark: _Toc251777697][bookmark: _Toc251777901][bookmark: _Toc251778101][bookmark: _Toc251778302][bookmark: _Toc251778502][bookmark: _Toc251778701][bookmark: _Toc251778899][bookmark: _Toc251781918][bookmark: _Toc251782123][bookmark: _Toc251783844][bookmark: _Toc251776262][bookmark: _Toc251777495][bookmark: _Toc251777698][bookmark: _Toc251777902][bookmark: _Toc251778102][bookmark: _Toc251778303][bookmark: _Toc251778503][bookmark: _Toc251778702][bookmark: _Toc251778900][bookmark: _Toc251781919][bookmark: _Toc251782124][bookmark: _Toc251783845][bookmark: _Toc251776263][bookmark: _Toc251777496][bookmark: _Toc251777699][bookmark: _Toc251777903][bookmark: _Toc251778103][bookmark: _Toc251778304][bookmark: _Toc251778504][bookmark: _Toc251778703][bookmark: _Toc251778901][bookmark: _Toc251781920][bookmark: _Toc251782125][bookmark: _Toc251783846][bookmark: _Toc251776264][bookmark: _Toc251777497][bookmark: _Toc251777700][bookmark: _Toc251777904][bookmark: _Toc251778104][bookmark: _Toc251778305][bookmark: _Toc251778505][bookmark: _Toc251778704][bookmark: _Toc251778902][bookmark: _Toc251781921][bookmark: _Toc251782126][bookmark: _Toc251783847][bookmark: _Toc251776265][bookmark: _Toc251777498][bookmark: _Toc251777701][bookmark: _Toc251777905][bookmark: _Toc251778105][bookmark: _Toc251778306][bookmark: _Toc251778506][bookmark: _Toc251778705][bookmark: _Toc251778903][bookmark: _Toc251781922][bookmark: _Toc251782127][bookmark: _Toc251783848][bookmark: _Toc251776266][bookmark: _Toc251777499][bookmark: _Toc251777702][bookmark: _Toc251777906][bookmark: _Toc251778106][bookmark: _Toc251778307][bookmark: _Toc251778507][bookmark: _Toc251778706][bookmark: _Toc251778904][bookmark: _Toc251781923][bookmark: _Toc251782128][bookmark: _Toc251783849][bookmark: _Toc251776267][bookmark: _Toc251777500][bookmark: _Toc251777703][bookmark: _Toc251777907][bookmark: _Toc251778107][bookmark: _Toc251778308][bookmark: _Toc251778508][bookmark: _Toc251778707][bookmark: _Toc251778905][bookmark: _Toc251781924][bookmark: _Toc251782129][bookmark: _Toc251783850][bookmark: _Toc251776268][bookmark: _Toc251777501][bookmark: _Toc251777704][bookmark: _Toc251777908][bookmark: _Toc251778108][bookmark: _Toc251778309][bookmark: _Toc251778509][bookmark: _Toc251778708][bookmark: _Toc251778906][bookmark: _Toc251781925][bookmark: _Toc251782130][bookmark: _Toc251783851][bookmark: _Toc251776269][bookmark: _Toc251777502][bookmark: _Toc251777705][bookmark: _Toc251777909][bookmark: _Toc251778109][bookmark: _Toc251778310][bookmark: _Toc251778510][bookmark: _Toc251778709][bookmark: _Toc251778907][bookmark: _Toc251781926][bookmark: _Toc251782131][bookmark: _Toc251783852][bookmark: _Toc251776270][bookmark: _Toc251777503][bookmark: _Toc251777706][bookmark: _Toc251777910][bookmark: _Toc251778110][bookmark: _Toc251778311][bookmark: _Toc251778511][bookmark: _Toc251778710][bookmark: _Toc251778908][bookmark: _Toc251781927][bookmark: _Toc251782132][bookmark: _Toc251783853][bookmark: _Toc251776271][bookmark: _Toc251777504][bookmark: _Toc251777707][bookmark: _Toc251777911][bookmark: _Toc251778111][bookmark: _Toc251778312][bookmark: _Toc251778512][bookmark: _Toc251778711][bookmark: _Toc251778909][bookmark: _Toc251781928][bookmark: _Toc251782133][bookmark: _Toc251783854][bookmark: _Toc251776272][bookmark: _Toc251777505][bookmark: _Toc251777708][bookmark: _Toc251777912][bookmark: _Toc251778112][bookmark: _Toc251778313][bookmark: _Toc251778513][bookmark: _Toc251778712][bookmark: _Toc251778910][bookmark: _Toc251781929][bookmark: _Toc251782134][bookmark: _Toc251783855][bookmark: _Toc251776273][bookmark: _Toc251777506][bookmark: _Toc251777709][bookmark: _Toc251777913][bookmark: _Toc251778113][bookmark: _Toc251778314][bookmark: _Toc251778514][bookmark: _Toc251778713][bookmark: _Toc251778911][bookmark: _Toc251781930][bookmark: _Toc251782135][bookmark: _Toc251783856][bookmark: _Toc251776274][bookmark: _Toc251777507][bookmark: _Toc251777710][bookmark: _Toc251777914][bookmark: _Toc251778114][bookmark: _Toc251778315][bookmark: _Toc251778515][bookmark: _Toc251778714][bookmark: _Toc251778912][bookmark: _Toc251781931][bookmark: _Toc251782136][bookmark: _Toc251783857][bookmark: _Ref251253487][bookmark: _Ref251253489][bookmark: _Toc284347443]Interfaces Context
The following picture reports the context in which the OPGW will operate.
[image:][image: CONTEXT]
[bookmark: _Toc284347745]Figure 4‑54‑5: OPGW Context Diagram.

As highlighted in the previous figure, OPGW interacts with the following entities:
· HMA Client
It is a client in charge of sending SOAP requests compliant with OGC 06-141. The expected HMA Clients are:
· The TEAM engine, which will be used for validating the updated interfaces;
· SSE, which will be connected to OPGW and added to the list of available Service Providers.
The following are the exchanged interfaces:
· OGC 06-131, for ordering interfaces;
· OGC 07-118, for the encoding of user management information (it is the protocol currently used from the DAIL).
· EOLI XML Catalogue Server
It is a place holder for a Web Service implementing the EOLI XML Catalogue interface for ESA collections. At the moment, this interface is provided by the MUIS system (via DSM + IDS), but MUIS is going to be replaced by M2EOS during 2010 and then OPGW will be connected to this system (actually M2AS and then M2CS sub-system).
· EOLI XML Order Server
It is a place holder for a Web Service implementing the EOLI XML Ordering interface for ESA collections. This interface is currently provided by the MMOHS through M2EOS system.
At the moment, this interface is provided by MUIS system (via DSM + OFS and then MMOHS), but MUIS is going to be replaced by M2EOS during 2010 and then OPGW will be connected to this system (actually M2AS and then MMOHS).
· OPGW Operator
It is the entity in charge of operating the OPGW. It has to provide the following configuration items:
· Configuration files for the basic working of OPGW;
· Capabilities XML files for the implemented ordering service;
· List of configured users, with profile, i.e. the users that allowed issuing orders via OPGW.
· External OGC 06-131 Catalogue
This is the OGC Catalogue storing the EO Product metadata to be queried and ordered from the HMA Client.
The ordering of products is performed after having discovered the products of interest via a catalogue search. The catalogue is not needed for the working of OPGW: in fact it is able to process the orders on its own; the catalogue is needed for supporting the user on selecting the product of interest so OPGW has an indirect relationship with the External OGC Catalogue. The external catalogue is queried by the HMA Client for discovering the list of products available for ordering; then the HMA Client will send a product order to OPGW specifying the product identifiers returned by OGC Catalogue. Then OPGW and OGC Catalogue shall understand the same product identifiers.
This catalogue must be kept synchronized with OPGW in order to make sure that the EO products returned by this catalogue have the same identifiers understood from OPGW and the same EO Product metadata is available also in the connected EOLI XML Catalogue Server.
· ESA Order Desk
The ESA order desk is notified by e-mail in case of cancellation of an HMA Order.
ESA User Services do not support the on-line cancellation of orders, but this function is supported via interaction with the Order Desk. In order to simulate the on-line cancellation of orders, OPGW will send an e-mail to a configured address asking for the cancellation of the specified order.
The interfaces exchanged between the components and entities showed in the diagram are:
· OPGW vs. HMA Client:
· HMA Ordering ICD [AD-05]: it specifies the HMA interfaces for ordering products from catalogue.
· DAIL UM ICD [AD-11]: it is not explicitly mentioned in above diagram, but it is implicitly included in all DAIL interfaces;
· OPGW vs. EOLI XML Catalogue:
· EOLI XML Catalogue [AD-01]: it allows querying the EO products catalogue for getting mainly the visible products necessary for compiling an order.
· OPGW vs. EOLI XML Order Server:
· EOLI XML Ordering [AD-06]: it allows issuing EO product orders.
· Users_YYYYMMDD_HHMMSS.xml, it carries on the user profile information needed for preparing EOLI XML Orders to send.
· OPGW vs. OPGW Operator:
· Monitor & control interfaces for operating, configuring OPGW.
· HMA Client vs. External OGC Catalogue
· HMA Catalogue ICD [AD-02], for getting the list of available EO products.
· OPGW vs. ESA Order Desk
· E-mail for cancelling an order.

The following sub-sections describes all the external interfaces showed in the context diagram above. For each interface the following information are provided:
· Name: identifies the interface.
· Type: specifies the exchange mechanism and the type of the exchanged data.
· Description: high level description of the interface.
· Data Structure Description: it provides the formal description of the exchanged data.

[bookmark: _Toc219600798][bookmark: _Toc284347444]OPGW vs. HMA Client (Input Interfaces)
[bookmark: _Toc219600799][bookmark: _Toc203113506][bookmark: _Toc284347445]HMA Ordering::GetCapabilities [Discrete flow]
[bookmark: _Toc219600800]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc203113507][bookmark: _Toc219600801]Description
This message allows a client to retrieve service metadata that describe the computational and non-computational characteristics of the service.
As specified in [AD-11], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc203113508][bookmark: _Toc219600802]Data Structure Description
See [AD-05] §8.1.2
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc219600803][bookmark: _Toc284347446]HMA Ordering::GetOptions [Discrete flow]
[bookmark: _Toc219600804]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600805]Description
This message allows retrieval of options for ordering products from catalogue, for subscribing to a subscription, for ordering products from a linked tasking request.
As specified in [AD-11], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc219600806]Data Structure Description
See [AD-05] §8.1.3
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc219600807][bookmark: _Toc284347447]HMA Ordering::Submit [Discrete flow]
[bookmark: _Toc219600808]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600809]Description
This request & response message allows submitting an order for product from a catalogue, for adhering to a subscription, for ordering products derived from a tasking request.
As specified in [AD-11], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc219600810]Data Structure Description
See [AD-05] §8.1.6
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc219600811][bookmark: _Toc284347448]HMA Ordering::GetStatus [Discrete flow]
[bookmark: _Toc219600812]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600813]Description
This request & response message allows a client to retrieve the list of submitted orders, to retrieve status of precisely identified orders.
As specified in [AD-11], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc219600814]Data Structure Description
See [AD-05] §8.1.8
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc219600839][bookmark: _Toc284347449]HMA Ordering::Cancel [Discrete flow]
[bookmark: _Toc219600840]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600841]Description
This request & response message allow submitting the cancellation of a already submitted order or to unsubscribe a subscription.
As specified in [AD-11], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc219600842]Data Structure Description
See [AD-05] §8.1.10.
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc219600843][bookmark: _Toc284347450]HMA Ordering::GetQuotation [Discrete flow]
[bookmark: _Toc219600844]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600845]Description
This request & response message allows requesting the quotation for an order for product.
As specified in [RD-05], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
[bookmark: _Toc219600846]Data Structure Description
See [AD-05] §8.1.4.
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Toc284347451]HMA Ordering::DescribeResultAccess [Discrete flow]
Type
SOAP message over HTTP POST (request & response)
Description
This operation allows a client to access the products ordered with on-line delivery.
As specified in [RD-05], the included SAML Token is encrypted using the public key of ESA GS (known also by OPGW) and then the OPGW is able to decrypt and get the needed information.
Data Structure Description
See [AD-05] §8.1.4.
[AD-11] specifies the format of messages coming from DAIL (WS-security block in the SOAP header).
[bookmark: _Ref204682190][bookmark: _Toc219600847][bookmark: _Toc284347452]key exchange [Control flow]
[bookmark: _Toc219600848]Type
Operator interface.
[bookmark: _Toc219600849]Description
This interface represents the exchange of the needed keys of encrypting / decrypting / signing messages.
[bookmark: _Toc219600850]Data Structure Description
See [RD-06].

[bookmark: _Toc219600851][bookmark: _Toc284347453]OPGW vs. HMA Client (Output Interfaces)
[bookmark: _Toc219600852][bookmark: _Toc284347454]HMA Ordering::SubmitResponse [Discrete flow]
[bookmark: _Toc219600853]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600854]Description
This operation is called by an HMA Ordering Service for notifying the issuer of the order about the progress of the order status.
Depending on how the order has been submitted, the client can get no notification, one notification when the order reaches a final status, or all notifications.
This asynchronous notification shall include the digital signature built using the private key of ESA GS. It is needed in order to allow the DAIL to recognize the issuer of the notification.
[bookmark: _Toc219600855]Data Structure Description
See [AD-05] §8.1.7.
[AD-11] specifies the format of asynchronous answers to send to the DAIL (WS-security block in the SOAP header).
HMA Ordering::CancelResponse [Discrete flow]
Type
SOAP message over HTTP POST (request & response)
Description
This operation is called by an HMA Ordering Service for notifying the issuer of the cancel order.
This asynchronous notification shall include the digital signature built using the private key of ESA GS. It is needed in order to allow the DAIL to recognize the issuer of the notification.
Data Structure Description
See [AD-05] §8.1.11.
[AD-11] specifies the format of asynchronous answers to send to the DAIL (WS-security block in the SOAP header).
HMA Ordering::GetQuotationResponse [Discrete flow]
Type
SOAP message over HTTP POST (request & response)
Description
This operation is called by an HMA Ordering Service for notifying the issuer of the quotation of a specified order.
This asynchronous notification shall include the digital signature built using the private key of ESA GS. It is needed in order to allow the DAIL to recognize the issuer of the notification.
Data Structure Description
See [AD-05] §8.1.5.
[AD-11] specifies the format of asynchronous answers to send to the DAIL (WS-security block in the SOAP header).

[bookmark: _Toc284347455]
[bookmark: _Toc219600865]OPGW vs. EOLI XML Catalogue (Input Interfaces)
None.
[bookmark: _Toc284347458]
[bookmark: _Toc284347459]
[bookmark: _Toc219600866]OPGW vs. EOLI XML Catalogue (Output Interfaces)
[bookmark: _Toc219600867]EOLI XML Catalogue::processPresentationRequest [Discrete flow]
[bookmark: _Toc219600868]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600869]Description
This message allows to retrieve (multiple) product metadata within a single collection by providing the product identification.
[bookmark: _Toc219600870]Data Structure Description
See [AD-01] §2.2.2
[bookmark: _Toc284347468]
[bookmark: _Toc284347469]
[bookmark: _Toc219600875][bookmark: _Toc284347470]OPGW vs. EOLI XML Order Server (Input Interfaces)
None.

[bookmark: _Toc219600876][bookmark: _Toc284347471]OPGW vs. EOLI XML Order Server (Output Interfaces)
[bookmark: _Toc219600877][bookmark: _Toc284347472]EOLI XML Order::processProductOrderRequest [Discrete flow]
[bookmark: _Toc219600878]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600879]Description
This operation allows an EOLI XML Ordering client to issue order for products in the catalogue.
[bookmark: _Toc219600880]Data Structure Description
See [AD-06] §2.2.5, §2.2.6.
[bookmark: _Toc219600885][bookmark: _Toc284347473]EOLI XML Order::processOrderMonitorRequest [Discrete flow]
[bookmark: _Toc219600886]Type
SOAP message over HTTP POST (request & response)
[bookmark: _Toc219600887]Description
This operation allows to monitor the order status by providing the order identifier and to retrieve all orders for a user that have been updated since a given date.
[bookmark: _Toc219600888]Data Structure Description
See [AD-06] §2.2.7, §2.2.8.

[bookmark: _Toc219600889][bookmark: _Toc284347474]OPGW vs. OPGW Operator (Input Interfaces)
[bookmark: _Toc219600890][bookmark: _Toc284347475]ServiceDirectory.xml [Discrete flow]
[bookmark: _Toc219600891]Type
XML File.
[bookmark: _Toc219600892]Description
This file carries on the order options for ESA GS Order Service.
This file is used for extracting the order options to return from GetOptions operation.
[bookmark: _Toc219600893]Data Structure Description
See [RD-03].
[bookmark: _Toc203613025][bookmark: _Toc219600900][bookmark: _Toc284347476]Users_YYYYMMDD_HHMMSS.xml [Discrete flow]
[bookmark: _Toc203613026][bookmark: _Toc219600901]Type
XML File.
[bookmark: _Toc203613027][bookmark: _Toc219600902]Description
This file carries on the profile information stored in EOLI XML Order Server (MMOHS). OPGW actually need only the information about user identifiers and user passwords.
[bookmark: _Toc203613028][bookmark: _Toc219600903]Data Structure Description
The format is specified in [AD-09].

[bookmark: _Ref251158648][bookmark: _Toc284347477] Long lifetime software
OPGW development is made available as open sources COTS in order to allow others to develop an order search without starting from scratch and to cope with the long planned lifetime of the software. OPGW needs of the following software resources.
· Operating System: Linux RedHat ES 5 Update 2 (being a Java development, the system can be built and operated also on Windows XP OS).
· Tomcat 6.0.2618
· Ant 1.8.16.5
· Java 1.65.0.1623;
· XML Beans 2.24.0
· HSQLDB 2.0.01.8.0.7
Using the previous listed resources it is guaranteed also the minimum dependency on the operating system to improve portability: in fact Java and the other Java based tools are available for many Operating Systems and hardware, then it is not issue to update the OS and the HW on which OPGW will be operated.

[bookmark: _Ref251158665][bookmark: _Toc284347478] Memory and CPU budget
OPGW needs of the following hardware resources:
· CPU: at least INTEL P4 2.4 GHz or equivalent;
· RAM: at least 1GB (1 GB is needed for ORACLE COTS)
· Al least 600 900 MB of free disk space (to hold the OPGW SW and COTS & ORACLE WSM);
· Graphic Adapter: no specific needs.

[bookmark: _Toc219600905][bookmark: _Toc284347479] Design Standards, conventions and procedures
This paragraph describes the method adopted for the architectural design of the system.
Within the project analysis and design phase, both structured and object-oriented modelling and design methods are applied:
· the first levels of the system analysis and decomposition (Architectural Design) are performed applying structured methods and using DFD diagrams for representation
· then the identified leaf components are further decomposed (Detailed Design) using object oriented methods based on UML.
· The dynamical behaviour of system is described using UML sequence diagrams.
[bookmark: _Toc219600906][bookmark: _Ref251691737][bookmark: _Toc284347480]UML Notations
The UML uses several kinds of models for system description. For the scope of this document the following diagrams are considered:
· Deployment Diagrams
Deployment diagrams show the configuration of run-time processing elements and the software components, processes, and objects that live on them. Software component instances represent run-time manifestations of code units. Components that do not exist as run-time entities (because they have been compiled away) do not appear on these diagrams.
· Component Diagrams
A component diagram shows the dependencies among software components, including source code components, binary code components, and executable components. A software module may be represented as a component type. A component diagram describes only the static relationship between software components.
· Class Diagrams
Class diagrams show the static structure of the model, in particular, the things that exist (such as classes and types), their internal structure, and their relationships to other things. Class diagrams do not show temporal information, although they may contain occurrences of things that have or things that describe temporal behaviour.
· Sequence Diagrams
A sequence diagram shows an interaction arranged in time sequence. In particular, it shows the objects participating in the interaction by their “lifelines” and the messages that they exchange arranged in time sequence. It does not show the associations among the objects.
In the following paragraphs the notations used in this document are explained.

[bookmark: _Toc4816475][bookmark: _Toc4935984][bookmark: _Toc5081254][bookmark: _Toc54689575][bookmark: _Toc219600907][bookmark: _Toc284347481]Deployment Diagrams Notations
A deployment diagram shows processors, devices, and connections. Each model contains a single deployment diagram that shows the connections between its processors and devices, and the allocation of its processes to processors. The picture below shows an example of deployment diagram where a network connects two workstations, and one hosts the server process and the other hosts the client application. The white boxes are the ‘Devices’ of the model; the boxes with black border are the ‘Processors’ of the model and the straight lines are the ‘Connections’ of the model.
 (
Figure
4
6
: Deployment Diagram Notations
)[image:]
[bookmark: _Toc4816476][bookmark: _Toc4935985][bookmark: _Toc5081255][bookmark: _Toc54689576][bookmark: _Toc219600908][bookmark: _Toc284347482]Component Diagrams Notations
Component diagrams provide a physical view of the current model. A component diagram shows the organizations and dependencies among software components, including source code components, binary code components, and executable components. These diagrams also show the externally visible behaviour of the components by displaying the interfaces of the components. Calling dependencies among components are shown as dependency relationships between components and interfaces on other components. Note that the interfaces actually belong to the logical view, but they can occur both in class diagrams and in component diagrams.
Component diagrams contain:
· Component packages
Component packages represent clusters of logically related components, or major pieces of your system. Component packages parallel the role played by logical packages for class diagrams. They allow you to partition the physical model of the system.
· Components
A component represents a software module (source code, binary code, executable, DLL, etc.) with a well-defined interface. The interface of a component is represented by one or several interface elements that the component provides. Components are used to show compiler and run-time dependencies, as well as interface and calling dependencies among software modules. They also show which components implement a specific class.
· Interfaces
An interface specifies the externally visible operations of a class and/or component, and has no implementation of its own. An interface typically specifies only a limited part of the behaviour of a class or component.
· Dependency relationships
The dependency relationship indicates that one entity in a component diagram uses the services or facilities of another.
Dependencies in the component diagram represent compilation dependencies. The dependency relationship may also be used to show calling dependencies among components, using dependency arrows from components to interfaces on other components.
In the same model one or more component diagrams are possible to depict the component packages and components at the top level of the component view, or to depict the contents of each component package. Such component diagrams belong to the component package that they depict.
The picture below illustrates the basic elements of a component diagram.
 [image:]
[bookmark: _Toc4936057][bookmark: _Toc5081656][bookmark: _Toc54689996][bookmark: _Toc219601092][bookmark: _Toc284347747]Figure 4‑74‑7: Component Diagram Notations

[bookmark: _Toc4816477][bookmark: _Toc4935986][bookmark: _Toc5081256][bookmark: _Toc54689577][bookmark: _Toc219600909][bookmark: _Toc284347483]Class Diagrams Notations
A class diagram is a picture for describing generic descriptions of possible systems. Class diagrams and object diagrams are alternate representations of object models. Class diagrams contain classes and object diagrams contain objects, but it is possible to mix classes and objects when dealing with various kinds of metadata, so the separation is not rigid.
Class diagrams contain icons representing classes, interfaces, and their relationships. In particular, class diagrams contain:
· Logical Packages
Packages serve to partition the logical model of a system. They are clusters of highly related classes that are themselves cohesive, but are loosely coupled relative to other such clusters. You can use packages to group classes, interfaces, and other packages.
· Classes
A class captures the common structure and common behaviour of a set of objects. A class is an abstraction of real-world items. When these items exist in the real world, they are instances of the class, and referred to as objects.
· Interfaces
An interface specifies the externally visible operations of a class and/or component, and has no implementation of its own. An interface typically specifies only a limited part of the behaviour of a class or component.
· Parameterised Classes
A parameterised class is a template for creating any number of instantiated classes that follow its format. A parameterised class declares formal parameters. You can use other classes, types, and constant expressions as parameters. You cannot use the parameterised class itself as a parameter. You must instantiate a parameterised class before you can create its objects.
In its simplest form, you use parameterised classes to build container classes.
· Instantiated Classes
An instantiated class is a class formed from a parameterised class by supplying actual values for parameters.
An instantiated class is created by supplying actual values for the formal parameters of the parameterised class. This instantiation process forms a concrete class in the family of the parameterised class. The instantiated class should be put at the client end of an instantiate relationship (accessible through the Create Entry on the Tools menu) that points to the corresponding parameterised class.
· Association Relationships
An association represents a semantic connection between two classes, or between a class and an interface. Associations are bi-directional; they are the most general of all relationships and the most semantically weak.
· Aggregate Relationship
The aggregate relationship is used for showing a whole and part relationship between two classes.
The class at the client end of the aggregate relationship is sometimes called the aggregate class. An instance of the aggregate class is an aggregate object. The class at the supplier end of the aggregate relationship is the part whose instances are contained or owned by the aggregate object.
The aggregate relationship is used for showing that the aggregate object is physically constructed from other objects or that it logically contains another object. The aggregate object has ownership of its parts.
· Generalize/Inherits Relationships
A generalize relationship between classes shows that the subclass shares the structure or behaviour defined in one or more super-classes. Use a generalize relationship to show an "is- a" relationship between classes.
· Instantiates Relationships
An instantiates relationship represents the act of substituting actual values for the parameters of a parameterised class or parameterised class utility to create a specialized version of the more general item. In most cases, you will also draw a uses relationship between the instantiated class and another concrete class that is used as an actual parameter.
· Dependency Relationships
Draw a dependency relationship between two classes, or between a class and an interface, to show that the client class depends on the supplier class/interface to provide certain services, such as:
· The client class accesses a value (constant or variable) defined in the supplier class/interface.
· Operations of the client class invoke operations of the supplier class/interface.
· Operations of the client class have signatures whose return class or arguments are instances of the supplier class/interface.
The next picture shows the items just explained.
 (
Figure
4
8
: Class Diagram Notations.
)[image:]
[bookmark: _Toc251777539][bookmark: _Toc251777742][bookmark: _Toc251777946][bookmark: _Toc251778146][bookmark: _Toc251778347][bookmark: _Toc251778547][bookmark: _Toc251778746][bookmark: _Toc251778944][bookmark: _Toc251781963][bookmark: _Toc251782168][bookmark: _Toc251783889][bookmark: _Toc251777540][bookmark: _Toc251777743][bookmark: _Toc251777947][bookmark: _Toc251778147][bookmark: _Toc251778348][bookmark: _Toc251778548][bookmark: _Toc251778747][bookmark: _Toc251778945][bookmark: _Toc251781964][bookmark: _Toc251782169][bookmark: _Toc251783890][bookmark: _Toc4816478][bookmark: _Toc4935987][bookmark: _Toc5081257][bookmark: _Toc54689578][bookmark: _Toc219600910][bookmark: _Toc284347484]Sequence Diagrams Notations
Sequence diagrams are a representation of an interaction between objects. A sequence diagram traces the execution of an interaction in time.
The picture below illustrates a sequence diagram.
 (
Figure
4
9
: Sequence Diagram Notations
)[image:]
[bookmark: _Toc4816479][bookmark: _Toc4935988][bookmark: _Toc5081258][bookmark: _Toc54689579][bookmark: _Toc219600911][bookmark: _Toc284347485]Data Flow Diagrams Notations
In a data flow diagram are considered the following items:
· Processes
It is a function that produces or generates data. It could represent:
· a package, that is a collection of functional homogeneous items (i.e. executables and library);
· an executable;
· a library;
· a library section, that is a set of functions with an high level of cohesion within a library;
· a function, that is a block of code of an executable devoted to make a specific task.
· Data Flows
· A data flow is a flow of information exchanged between two items of the model.
· Data Stores
· A data store is a storage area, and is used to identify a directory of the file system, a file, and a database.
· External Entities
· Is an entity external to the system to be analysed.
The picture below illustrates a data flow diagram.
[bookmark: _Toc284347750]Figure 4‑104‑10: Data Flow Diagram Notations[image:]

[bookmark: _Toc4816480][bookmark: _Toc4935989][bookmark: _Toc5081259][bookmark: _Toc54689580][bookmark: _Toc219600912][bookmark: _Toc284347486]Database Schema Notations
The database schemas have been represented using a notation similar to that of class diagrams. In fact relational tables have been represented with the same symbol used for classes but adding the “Relational Table” stereotype, the foreign key links between tables have been represented with the same symbol used for associations but adding the stereotype “FK”.
In the following example two relational tables linked with a foreign key constraint have been represented. (
Figure
4
11
: Database Schemas Notations
) [image:]
[bookmark: _Toc284347487]
Software Design
[bookmark: _Toc251781969][bookmark: _Toc251782174][bookmark: _Toc251783895][bookmark: _Toc284347488] General
This section provides the architectural decomposition of OPGW system describing:
· The different sub-components function and processing;
· The relationships and the interfaces between the different sub-components;
· The dynamical behaviour of the system.

[bookmark: _Toc251781971][bookmark: _Toc251782176][bookmark: _Toc251783897][bookmark: _Toc251781972][bookmark: _Toc251782177][bookmark: _Toc251783898][bookmark: _Toc251781973][bookmark: _Toc251782178][bookmark: _Toc251783899][bookmark: _Toc219600790][bookmark: _Toc219600791][bookmark: _Toc251781974][bookmark: _Toc251782179][bookmark: _Toc251783900][bookmark: _Toc284347489]Overall architecture
[bookmark: _Toc284347490]Components overview
P-pppp/…	Testo dedicato a formula di riservatezza e divulgazione del documento	Pagina 5 di 78

	
	UNCLASSIFIED
	

	P50638/BUSSUS-0011-11
	OPGW – Software Design Document
for HMA Follow On Task4 - Order
	Page 4 of 79

The following picture reports the first level decomposition of OPGW.
ELSAGDATAMAT	TITOLO DOCUMENTO[image: FlashUno]
Telespazio spa Copyright as reported on the cover page

[image:][image:]
[bookmark: _Ref251812442][bookmark: _Toc204518420][bookmark: _Toc219601086][bookmark: _Toc284347752]Figure 5‑15‑1: OPGW First level decomposition.
P-pppp/…	Testo dedicato a formula di riservatezza e divulgazione del documento	Pagina 5 di 78

	
	UNCLASSIFIED
	

	P50638/BUSSUS-0011-11
	OPGW – Software Design Document
for HMA Follow On Task4 - Order
	Page 40 of 79

ELSAGDATAMAT	TITOLO DOCUMENTO[image: FlashUno]
Telespazio spa Copyright as reported on the cover page

In the following sub-sections the description of OPGW level 1 components is provided.

[bookmark: _Ref251253426][bookmark: _Ref251253433][bookmark: _Toc284347491] Software components design - General
The OPGW is structured in the following sub-components:
· OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
This an AXIS2 web service generated by Netbeans V6.9.1 using the WSDL provided with the OSEO protocol.
This component is basically in charge of accepting SOAP requests compliant with the OSEO WSDL and then calls the appropriate object of the OPGW_Core component.
It accepts all OSEO operations with the exclusion of the asynchronous notification operations (GetQuotationResponse, SubmitResponse, CancelResponse)
· OPGW_Core
Java JAR in charge of actually executing the requests accepted by the OPGW_OSEO_AxisService and then generates the corresponding response message.
· OPGW_Common
Java JAR implementing the basic functions needed to all other components e.g.: database access functions, EOLI XML formatting functions, OSEO formatting functions, user profile support functions.
· OPGW_SecurityLayer
This is a set of java classes in charge of performing encryption, decryption, digital signature preparation and verification.
· OPGW_ImportUsers
Stand alone Java application in charge of reading the Users.xml file coming from MMOHS and inserting the user profiles within the User DB.
· OPGW_CheckOrders
Stand alone Java application in charge of reading the order database looking for orders needing asynchronous notification but not completed yet. The EOLI XML Order Server is queried for getting possible order status update, in case of orders with final status then SubmitResponse operation is called on the Async Client.
This is the framework where the other sub-components run. It is in charge of:
· listening incoming SOAP requests issued via HTTP protocol;
· parse the input SOAP messages;
· understanding the correct object to activate;
Other special functionalities are:
· the Skeleton can work as a server accepting requests and returning back predefined answers specified within test procedures.
· the Skeleton includes test pages able to call the HMA Ordering interfaces provided by GSs Services.
· The Skeleton can insert new services just by adding new java classes implementing the operations of the services to add and properly configuring the Skeleton. This capability of hosting new services by updating configuration files and deploying suitable java classes has been used for implementing OPGW services.
· OPGWHSQL DB - Database
It is the HSQLDB (HyperSQL) Java Relation Database used for storing Users and Orders of OPGW.
· extractProductMapping.py
Script python in charge of converting the EOLI SA Service Directory file in the internal order options file used by OPGW (productMapping.xml)
· OPGW_SchemaLib
Package of JAR files managing all the XML schemas OPGW has to deal with (OSEO V1.0.0, V0.9.4, SPS EO V0.9.5, OWS 2.0, GML 3.2.1, etc.) generated with XML Beans tool.
· OPGW Test Kit
Package of Java applications needed for testing the OSEO service.
Package including the RDBMS (HSQLDB) and the Java library in charge of providing the functions for querying and storing permanently users and orders.
· OPGW - Order Service
It is a set of java classes deployed on the Skeleton that are in charge of managing the operations defined in HMA Ordering ICD so it shall be able to manage the following operations:
· GetCapabilities.
· GetOptions.
· GetQuotation.
· Submit.
· GetStatus.
· Cancel.
· DescribeResultAccess.
Because the similarity between the HMA Ordering interfaces and the EOLI XML Order ICD interfaces, then this component works mainly translating the HMA requests in EOLI XML requests and translating back the EOLI XML response in HMA responses.
· Support Tools
This is a set of Java classes providing the functionalities needed by OPGW:
· Tool for loading ESA GS users in the OPGW database;
· Tool for converting the order options of ServiceDirectory.xml;
· SOAP client tool for testing the system;
· Asynchronous notification: it includes Java stand alone applications for sending the notifications of asynchronous operations.
· Security Layer
This is a set of java classes in charge of performing encryption, decryption, digital signature preparation and verification.

[bookmark: _Toc284347492] Software components design – Aspect of each component
This section provides the description of the different sub-components of OPGW system.

[bookmark: _Ref204675142][bookmark: _Toc219600915][bookmark: _Toc284347493]OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
This is a service implemented as AXIS2 Web Service from the OSEO WSDL using Netbeans V6.9.1 IDE.
It is deployed on Apache TOMCAT (V6.0.26) and it includes basically the functions for:
· Accepting SOAP calls compliant with OSEO specification i.e.
· GetCapabilities
· GetOptions
· GetQuotation
· Submit
· GetStatus
· Cancel
· DescribeResultAccess
operations.
· Performing the basic SOAP management:
· Extraction of WS-addressing header parameters
· Extraction, decryption, digital signature verification of the SAML token
· Logging the received SOAP request
· Logging the response message
· Activation of the OPGW_Core component for the actual execution of the request.
The HMA Skeleton is the environment in which the OPGW services run.
The HMA Skeleton has been developed by Spacebel in the frame of HMA-I project with the following purposes:
· Testing the HMA Client: it can work as a server accepting requests coming from the EO DAIL and returning back predefined answers specified within test procedures.
· Testing the GSs Services: the Skeleton includes test pages able to call the HMA interfaces provided by GSs Services.
· Develop GS Services: new services can be added just by adding new java classes implementing the operations of the services to add and properly configuring the Skeleton.
This capability of hosting new services just by updating configuration files and deploying suitable java classes has been used for implementing OPGW services.
The HMA Skeleton is based on:
· Apache TOMCAT for accepting HTTP request and run Servlets;
· Apache Axis 1.x to serialize and de-serialize SOAP messages.
All the software to be deployed into the Skeleton shall be developed in Java.
[bookmark: _Toc219600933][bookmark: _Toc284347504]Type
Sub-system (package)Axis Archive (.aar)
[bookmark: _Toc219600934][bookmark: _Toc284347505]Purpose
See §6.
[bookmark: _Toc284347506]Function
· Accepting SOAP requests;
· Send back SOAP Responses
· Extract WS-addressing information;
· Extract SAML Token;
· Logging the SOAP request and the response message (via Apache LOG4J)
HMA Skeleton is an environment based on Java run-time, TOMCAT and Axis suitable for hosting Web Services.
It provides a basic skeleton which can be extended by updating configuration files and deploying suitable Java classes for implementing new services.
In the frame of this project it has been customized for implementing the latest version of HMA Ordering Service.
[bookmark: _Toc219600935][bookmark: _Toc284347510]Subordinates
None.
[bookmark: _Toc219600936][bookmark: _Toc284347511]Dependencies
The Database TOMACAT package shall be up and running;
HSQLDB shall be up and running..
[bookmark: _Toc219600937][bookmark: _Toc284347512]Interfaces
Inputs:
· HMA Ordering::GetCapabilities [Discrete flow]
· HMA Ordering::GetOptions [Discrete flow]
· HMA Ordering::GetQuotation [Discrete flow]
· HMA Ordering::Submit [Discrete flow]
· HMA Ordering::GetStatus [Discrete flow]
· HMA Ordering::Cancel [Discrete flow]
· key [Discrete flow]
· HMA Ordering::DescribeResultAccess [Discrete flow]
·
Outputs:
· activate Ordering OSEO_ServiceCore Class [Discrete flow]
[bookmark: _Toc219600938][bookmark: _Toc284347513]Resources
[bookmark: _Toc219600939]See §4.4 and §4.5.
[bookmark: _Toc284347514]References
[RD-02] None.
[bookmark: _Toc219600940][bookmark: _Toc284347515]Processing
See §5.4.1
[bookmark: _Toc219600941][bookmark: _Toc284347516]Data
None.
[bookmark: _Ref204675543][bookmark: _Toc219600916][bookmark: _Toc284347517]
OPGW_Core - Order Service
 [image:]
[bookmark: _Toc219601098]Figure 5‑2: Ordering Service Architecture
The OPGW_Core Ordering Service component is a set of Java classes in charge of implementing the operations of the HMA Ordering ICD.
It is composed of:The entry point of this component is:
· OSEO_ServiceCoreOrderService:
It provides one method for each operation of the OSEO specification to be implemented.
This class is instantiated by the OPGW_OSEO_AxisService component whenever an OSEP service operation is called by the clients and then, depending on the requested operation, the corresponding method is called (e.g. GetCapabilities, GetOptions, etc.).
The OSEO operations are implemented partly in this class and partly calling dedicated helper classes:
· OSEO_GetOptionsHelper, supporting the implementation of GetOptions operation;
· OSEO_GetStatusHelper, supporting the implementation of GetStatus operation;
· OSEO_SubmitHelper, supporting the implementation of Submit operation;
OSEO Operations:
This java class is the interface between the Skeleton software and the OPGW specific software. It has to provide all the operations of the HMA Ordering ICD supported by the OPGW with the signature specified in the Skeleton documentation. Each operation is implemented by creating the corresponding Helper class and activating the corresponding operation.
· OrderHelper_GetCapabilities:
This java class is in charge of providing answers to GetCapabilities requests. The response is simply built by reading a valid and pre-configured Capabilities n XML document containing the OPGW capabilities and returning backbacks it within a SOAP envelope.
This operation supports also version negotiation:
It supports several capabilities files each corresponding to a specific version. Depending on the version requested by the client it returns the corresponding capabilities file or returns an error in case the version is not supported.
· OrderHelper_GetOptions:
This java class in charge of providing answers to GetOptions requests.
The operation is implemented accessing the Order Options table (($OPGW_CONFIG/ productMapping.xml), generated by converting the EOLI SA ServiceDirectory.xml file, looking for the options matching the collection identifier specified in the input parameter and translating them in the corresponding OSEO format by applying a style sheet ($OPGW_CONFIG/ productMapping.xsl)..
· OrderHelper_Submit:
This operation is implemented by translating OSEO Submit in This class is in charge of managing the Submit operation of HMA Ordering ICD.
This class performs translation between HMA Submit and EOLI XML processProductOrderRequest operations following the rules specified in [AD-07].
It supports order for past products so it receives all needed information from the input request. Submit is an asynchronous request and then the service has to be able to send back notifications to the client.
The notification has to be sent if the WS-Addressing header is properly set i.e.:
· wsa:ReplyTo is not set to anonymous (http://www.w3.org/2005/08/addressing/anonymous)
· wsa:MessageID: is not empty
and if:
· statusNotification is set to “Final”. As specified in [AD-07], only “None” and “Final” are the supported values.
EOLI XML Order ICD [AD-06] does not support status notification, and then the status has to be retrieved by activating order monitoring operations.
To be noted that, for building an EOLI XML Ordering request, the user name and password of the issuer of the request has to be included. Because the SAML Token embedded in Client requests does not include the password, then it has to be retrieved from the OPGW user database.
Processing:
· extraction of SOAP header:
· WS-addressing
· Decrypt SAML Token
· Read the SAML Token attributes (hmaAccount)
· Parsing of the SOAP Body
· Translation of the HMA Submit in the EOLI XML processProductOrder rRequest:
· Set up user name and password in EOLI XML request (getting the parameters from SAML Token and user Database).
· Map the other ordering parameters;
· Set-up the order item:
· Set-up the resTitle starting from input identifier
· Set-up order options from HMA ones
· Set the order reference with a string marking that it is an order issued by OPGW and that it is related to PAST products.
· Set up collection id
· Send the request to the EOLI XML Order Server.
· Translation of the EOLI XML response in the corresponding HMA response
· On successful acceptance of the order from the EOLI XML Order server, then the OSEO Order is stored in the OPGW Database. This is later re-used in case of orders with asynchronous notification.
· In case of asynchronous notifications, the order is stored in the order database
· A tool for managing orders that require status notification (CheckOrder tool provided by Support Tools) periodically checks the Order Database and when detects that the order has reached a final status sends a notification to the client.
· OrderHelper_GetStatus:
This class is in charge of managing the GetStatus operation of HMA Ordering ICD.
For HMA OrderingOSEO GetStatus and EOLI XML processOrderMonitorRequest there is almost one-one mapping. As for Submit operation, EOLI XML request shall include user name and password, thenand then it has to be retrieved from OPGW user database.
Processing:
· extraction of SOAP header:
· Decrypt SAML Token
· Read the SAML Token attributes (hmaAccount)
· Parsing of the SOAP Body
· Set up EOLI XML order monitoring request
· Set up user name and password in EOLI XML request (getting the parameters from SAML Token and the user Database).
· Set up the order monitoring parameters:
· Either the order id
· Or the filtering parameters
· Send the request to the EOLI XML Ordering server.
· Translation of the EOLI XML response in the corresponding HMA response, there is an almost one-one mapping
· OrderHelper_Cancel:
This operation is only simulated by OPGW because EOLI XML Order does not support on-line order cancellation.
This class is in charge of managing the Cancel operation of HMA Ordering ICD.
It supports cancel order for past with the ID order. Cancel is an asynchronous request and then the service has to be able to send back notifications to the client.
The notification has to be sent if the WS-Addressing header is properly set i.e.:
· wsa:ReplyTo is not set to anonymous (http://www.w3.org/2005/08/addressing/anonymous)
· wsa:MessageID: is not empty
and if:
· statusNotification is set to “Final”. As specified in [AD-07], only “None” and “Final” are the supported values.
As for Submit operation, the request shall include user name and password, thenand then it has to be retrieved from OPGW user database.
Processing:
· extraction of SOAP header:
· WS-addressing
· Decrypt SAML Token
· Read the SAML Token attributes (hmaAccount)
· Read the SAML Token attributes (hmaAccount)
· Parsing of the SOAP Body
· Send the request to cancel the order identified by ID to ESA Order DeskLog the request.
· OrderHelper_DescribeResultAccess:
This class is in charge of managing the DescribeResultAccess operation of HMA Ordering ICD. It supports the retrieving the products ordered with online delivery.
As for Submit operation, the request shall include user name and password, then it has to be retrieved from OPGW user database.
This function is not actually performed by OPGW, but it is simulated putting a test file in an appropriate directory for being downloaded.
Processing:
· extraction of SOAP header:
· Decrypt SAML Token
· Read the SAML Token attributes (hmaAccount)
· Parsing of the SOAP Body
· Send the request to recover the order identified by ID.
· The response includes the URLs where the client can take the product ordered with online delivery and returning back it within a SOAP envelope.
· OrderHelper_GetQuotation:
This class is in charge of managing the GetQuotation operation of HMA Ordering ICD.

It supports quotation requests for past products so it receives all needed information from the input request. GetQuotation can be an asynchronous request and then the service has to be able to send back notifications to the client.
The notification has to be sent if the WS-Addressing header is properly set i.e.:
· wsa:ReplyTo is not set to anonymous (http://www.w3.org/2005/08/addressing/anonymous)
· wsa:MessageID: is not empty
and if:
· statusNotification is set to “Final”. As specified in [AD-07], only “None” and “Final” are the supported values.
As for Submit operation, the request shall include user name and password, then it has to be retrieved from OPGW user database.
To be noted that the quotation is not supported by ESA GS and then it is simulated by OPGW just for allowing a client to test this Service operation.
Processing:
· extraction of SOAP header:
· WS-addressing
· Decrypt SAML Token
· Read the SAML Token attributes (hmaAccount)
· Parsing of the SOAP Body
· In case of synchronous notification the response is the quotation and returning back it within a SOAP envelope.
· In case of asynchronous notifications, the order is stored in the order database
· A tool for managing quotation that require status notification (CheckOrder tool provided by Support Tools) periodically checks the Order Database and when it finds a quotation ready to send, send it to the client.
[bookmark: _Toc219600943][bookmark: _Toc284347518]Type
Sub-systemJAR file (java classes)
[bookmark: _Toc219600944][bookmark: _Toc284347519]Purpose
See §6.
[bookmark: _Toc284347520]Function
The Ordering Service component is a set of Java classes in charge of implementing the operation of the HMA Ordering ICD:
· GetCapabilities
· GetOptions
· GetQuotation
· Submit
· GetStatus
· Cancel
· DescribeResultAccess
[bookmark: _Toc219600945][bookmark: _Toc284347521]Subordinates
OS - OrderHelper_GetCapabilities
OS - OrderHelper_GetOptions
OS - OrderHelper_Submit
OS - OrderHelper_GetStatus
OS - OrderHelper_Cancel
OS - OrderHelper_GetQuotation
OS - OrderHelper_DescribeResultAccess
OS - OrderServiceNone
[bookmark: _Toc219600946][bookmark: _Toc284347522]Dependencies
TOMCAT shall be up and running;
OPGW_OSEO_AxisService shall be up and running.
The Skeleton shall be up & running.
The Database shall be up & running.
[bookmark: _Toc219600947][bookmark: _Toc284347523]Interfaces
Inputs:
· activate OSEO_ServiceCore class Ordering Class [Discrete flow]
· productMapping.xml Order Option Table [Discrete flow]
· Order Capabilities File [Discrete flow]
Outputs:
· EOLI XML Order::processProductOrderRequest [Discrete flow]
· EOLI XML Order::processOrderMonitorRequest [Discrete flow]
· Read User Database [Discrete flow]
· Update Order Database [Discrete flow]
· EOLI XML Catalogue::processPresentationRequest [Discrete flow]
· email for cancel [Discrete flow]
· decrypt SAML Token [Discrete flow]
· verify signature [Discrete flow]
[bookmark: _Toc219600948][bookmark: _Toc284347524]Resources
See §4.4 and §4.5.
[bookmark: _Toc219600949][bookmark: _Toc284347525]References
None.
[bookmark: _Toc219600950][bookmark: _Toc284347526]Processing
See §5.4.2.
[bookmark: _Toc219600951][bookmark: _Toc284347527]Data
· Preconfigured Capabilities XML document
· Preconfigured list of order options.

[bookmark: _Ref284266593][bookmark: _Toc284347528]
OPGW_Common
This library regroups all functions used by the other OPGW components:
· Helper functions for supporting WS-Addressing header parsing;
· Helper functions for mapping between OSEO and EOLI protocols and vice-versa;
· Helper functions for managing Order Options;
· Support functions for calling EOLI and OSEO services.
[bookmark: _Toc284347529]Type
JAR file.
[bookmark: _Toc284347530]Purpose
See §6.
[bookmark: _Toc284347531]Function
This library is divided into several packages, one for each specific function:
· package com.ed.eoli.client: regroups classes for calling EOLI XML Servers.
· package com.ed.opgw.database: java classes for reading / writing the orders and users database.
· package com.ed.opgw.exceptions: common set of exceptions generated by OPGW software.
· package com.ed.opgw.users: functions for managing users profile attributes.
· package com.ed.opgw.util: functions for doing some basic XML manipulation.
· package com.ed.opgw.util.eoli: functions supporting formatting of some EOLI XML elements (scene centres, polygons, date & time).
· package com.ed.opgw.util.oseo_eoli: functions for converting order options, delivery options etc. from EOLI to OSEO and vice-versa.
· package com.ed.opgw.util.swe: functions for reading values encoded in SWE (XML encoding only).
· package com.ed.oseo.v100.client: includes a class in charge of sending OSEO requests and receiving XML responses via XMLBEANS objects and not via SOAP messages.
· package com.ed.wsa: functions supporting WS-addressing management.
[bookmark: _Toc284347532]Subordinates
None
[bookmark: _Toc284347533]Dependencies
None
[bookmark: _Toc284347534]Interfaces
Inputs:
· Read User Database [Discrete flow]
· Update Order Database [Discrete flow]
· Read Order Database [Discrete flow]
· Update User Database [Discrete flow]
Outputs:
· JDBC access [Discrete flow]
[bookmark: _Toc284347535]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347536]References
None.
[bookmark: _Toc284347537]Processing
See §5.4.3.
[bookmark: _Toc284347538]Data
None

[bookmark: _Toc251783945][bookmark: _Toc251783946][bookmark: _Toc219600918][bookmark: _Ref251159230]

OPGW_ImportUsers
This is a standalone Java application in charge of parsing the user profile defined in the following interface [AD-09]: Users_YYYYMMDD_HHMMSS.xml
The parsed data is inserted in the DB by calling the suitable functions of the OPGW_Common component.
The parser of XML file is automatically generated starting from the XML schema using the XMLBEANS tool.
[bookmark: _Toc284347540]Type
Java Stand Alone Application (JAR file)
[bookmark: _Toc284347541]Purpose
See §6.
[bookmark: _Toc284347542]Function
· Ingestion of user profile information (user id, password, delivery address).
[bookmark: _Toc284347543]Subordinates
None
[bookmark: _Toc284347544]Dependencies
The Database shall be up and running.
[bookmark: _Toc284347545]Interfaces
Inputs:
· Users_YYYYMMDD_HHMMSS.xml [Discrete flow]
Outputs:
· Update User Database [Discrete flow]
[bookmark: _Toc284347546]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347547]References
None.
[bookmark: _Toc284347548]Processing
See §5.4.4.
[bookmark: _Toc284347549]Data
None

[bookmark: _Ref284323863][bookmark: _Toc284347550]
OPGW_CheckOrder
It is a stand-alone java application which is in charge of checking the progress of orders and quotation which need asynchronous notification. It scans periodically the order database table:
· for each order of the table that require async notification, the related order status is retrieved by calling the processOrderMonitorRequest operation of the EOLI XML Ordering Server. Whenever the returned status is: Cancelled, Completed, Deleted or NotValid then the notification about the completion of the order is sent to the client by calling the provided SubmitResponse operation and including the information returned by the order monitor operation response.
· for each order of the table that is flagged for cancellation, the related order status is retrieved by calling the processOrderMonitorRequest operation of the EOLI XML Ordering Server. Whenever the returned status is: Cancelled, Completed, Deleted or NotValid then the notification about the completion of the order is sent to the client by calling the provided CancelResponse operation and including the information returned by the order monitor operation response.
· for each order quotation found in the table, the corresponding quotation is generated by the tool and sent to the client by calling the provided GetQuotationResponse operation.
To be noted that, for sending the order monitor request the user name and password are needed, then it has to connect to the user DB for extracting relevant information.
[bookmark: _Toc284347551]Type
Java Stand Alone Application (JAR file)
[bookmark: _Toc284347552]Purpose
See §6.
[bookmark: _Toc284347553]Function
· Asynchronous order notification
· Asynchronous quotation notification
· Asynchronous cancel notification
[bookmark: _Toc284347554]Subordinates
None
[bookmark: _Toc284347555]Dependencies
The HSQL DB shall be up and running;
The back-end EOLI XML Order server shall be up and running;
The OSEO Asynchronous client shall be up and running.
[bookmark: _Toc284347556]Interfaces
Inputs:
· None
Outputs:
· HMA Ordering::SubmitResponse [Discrete flow]
· EOLI XML Order::processOrderMonitorRequest [Discrete flow]
· Update Order Database [Discrete flow]
· Read Order Database [Discrete flow]
· Read User Database [Discrete flow]
· create signature [Discrete flow]
· encrypt SAML Token [Discrete flow]
[bookmark: _Toc284347557]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347558]References
None.
[bookmark: _Toc284347559]Processing
See §5.4.5.
[bookmark: _Toc284347560]Data
None

[bookmark: _Toc284347561]
OPGW_SchemaLib
This is a set of JAR files generated automatically by XMLBEANS for managing the following schemas:
· OSEO V1.0.0
· SPS EO V2.0
· EOLI XML V2.8
· EOLI XML Order V3.4
· UM ICD V0.0.6
· OWS 2.0
· WS-security & SAML
· MMOHS users schema
This package is linked by all OPGW components in order to perform all the needed XML manipulations.
[bookmark: _Toc284347562]Type
Package of JAR files.
[bookmark: _Toc284347563]Purpose
See §6.
[bookmark: _Toc284347564]Function
To provide functions for reading & writing XML files compliant with the following schemas:
· OSEO V1.0.0
· SPS EO V2.0
· EOLI XML V2.8
· EOLI XML Order V3.4
· UM ICD V0.0.6
· OWS 2.0
· WS-security & SAML
· MMOHS users schema
[bookmark: _Toc284347565]Subordinates
None
[bookmark: _Toc284347566]Dependencies
None
[bookmark: _Toc284347567]Interfaces
Not showed in diagram, but all OPGW components are using this package of JAR files.
Inputs:
· None
Outputs:
· None
[bookmark: _Toc284347568]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347569]References
None.
[bookmark: _Toc284347570]Processing
None.
[bookmark: _Toc284347571]Data
None

OPGW - Support Tools
[bookmark: _Toc284322675][bookmark: _Toc284322993][bookmark: _Toc284323703][bookmark: _Toc284324013][bookmark: _Toc284326226][bookmark: _Toc284332170][bookmark: _Toc284334647][bookmark: _Toc284339434][bookmark: _Toc284339770][bookmark: _Toc284340797][bookmark: _Toc284344616][bookmark: _Toc284345962][bookmark: _Toc284346279][bookmark: _Toc284346597][bookmark: _Toc284346915][bookmark: _Toc284347235][bookmark: _Toc284347573] [image:]
[bookmark: _Toc219601100]Figure 5‑2: Support Tools Architecture.
This is a set of Java classes and tools providing the functionalities needed to Ordering Service component.
It includes the following sub-components:
· CheckOrders: stand-alone java application which is in charge of checking the progress of orders and quotation which need asynchronous notification. It scans periodically the order database table:
· for each order of the table that require async notification, the related order status is retrieved by calling the processOrderMonitorequest operation of the EOLI XML Ordering Server. Whenever the returned status is: Cancelled, Completed, Deleted or NotValid then the notification about the completion of the order is sent to the client by calling the provided SubmitResponse operation and including the information returned by the order monitor operation response.
· for each order of the table that is flagged for cancellation, the related order status is retrieved by calling the processOrderMonitorequest operation of the EOLI XML Ordering Server. Whenever the returned status is: Cancelled, Completed, Deleted or NotValid then the notification about the completion of the order is sent to the cient by calling the provided CancelResponse operation and including the information returned by the order monitor operation response.
· for each order quotation found in the table, the corresponding quotation is generated by the tool and sent to the client by calling the provided GetQuotationResponse operation.
To be noted that, for sending the order monitor request the user name and password are needed, then it has to connect to the user DB for extracting relevant information.
· Java Utility Classes:
· Logging of input and output messages.
· Managing communication with the EOLI XML Oder Server (MUIS or M2EOS).
· Managing communications with clients able to manage asynchronous notifications.
· Handling the SAML token embedded in DAIL requests (decryption, digital signature management, extraction of SAML Token attributes).
· ImportUsersTool
This is a stand alone Java application in charge of parsing the user profile defined in the following interface [AD-09]: Users_YYYYMMDD_HHMMSS.xml
The parsed data is inserted in the DB.
The parser of XML file is automatically generated starting from the XML schema using the XMLBeans tool. The parsed data is inserted in the DB calling the Java classes dealing with Database management hosted in the Database package.
· OrderOptionsConverterTool: it is a stand-alone application (python script) which is in charge of:
· extracting the order options from the whole set of configuration parameters stored into EOLI SA ServiceDirectory.xml configuration file
· writing the extracted data on XML file.
[bookmark: _Toc219601003]Type
Sub-system
[bookmark: _Toc219601004]Purpose
See §6.
Function
This is a set of Java classes and tools providing the functionalities needed to Order Service components. It includes the following functions:
· Asynchronous order notification
· Asynchronous quotation notification
· Asynchronous cancel notification
· Generation of order options in HMA format starting from EOLI SA XML configuration
· Ingestion of user profile information (user id and password)
[bookmark: _Toc219601005]Subordinates
· TLS - CheckOrders
· TLS - ImportUsersTool
· TLS - Java Utility Classes
· TLS - OrderOptionsConverterTool
[bookmark: _Toc219601006]Dependencies
The Database shall be up & running.
[bookmark: _Toc219601007]Interfaces
Inputs:
· Users_YYYYMMDD_HHMMSS.xml [Discrete flow]
· ServiceDirectory.xml [Discrete flow]
Outputs:
· HMA Ordering::SubmitResponse [Discrete flow]
· Read User Database [Discrete flow]
· Read Order Database [Discrete flow]
· Update Order Database [Discrete flow]
· Update User Database [Discrete flow]
· Order Option Table [Discrete flow]
· HMA Ordering::CancelResponse [Discrete flow]
· HMA Ordering::GetQuotationResponse [Discrete flow]
· encrypt SAML Token [Discrete flow]
· create signature [Discrete flow]
[bookmark: _Toc219601008]Resources
[bookmark: _Toc219601009]See §4.4 and §4.5.
References
None.
[bookmark: _Toc219601010]Processing
See §5.4.4
[bookmark: _Toc219601011]Data
None.
[bookmark: _Toc284322737][bookmark: _Toc284323055][bookmark: _Toc284323765][bookmark: _Toc284324075][bookmark: _Toc284326288][bookmark: _Toc284332232][bookmark: _Toc284334709][bookmark: _Toc284339496][bookmark: _Toc284339832][bookmark: _Toc284340859][bookmark: _Toc284344678][bookmark: _Toc284346024][bookmark: _Toc284346341][bookmark: _Toc284346659][bookmark: _Toc284346977][bookmark: _Toc284347297][bookmark: _Toc284347635]
[bookmark: _Toc219600919][bookmark: _Ref251158866][bookmark: _Ref251783652][bookmark: _Toc284347636]
OPGW HSQL DB- Database
This component is in charge of providing the functions for querying and permanently storing users and orders requests.
This component includes:
HSQLDB: it is the relational database engine used for managing users and orders requests.
HSQLDB is the leading SQL relational database engine written in Java. It has a JDBC driver and supports a rich subset of ANSI-92 SQL (BNF tree format) plus SQL 99 and 2003 enhancements. It offers a small (less than 100k in one version for applets), fast database engine which offers both in-memory and disk-based tables and supports embedded and server modes. Additionally, it includes tools such as a minimal web server, in-memory query and management tools (can be run as applets) and a number of demonstration examples.
This feature-packed software is completely free to use and distribute under licenses based on the standard BSD license. Completely free of cost or restrictions and fully compatible with all major open source licenses. Java source code and extensive documentation included.
· DB Util: package of Java classes encapsulating all functions for inserting, updating, reading users and orders requests. These functions are implemented uses JDBC API for accessing the DB.
[bookmark: _Ref204674588][bookmark: _Toc219600920]DB Schema
The following figure reports the OPGW Database schema.
[bookmark: _Toc219601102][image: OPGW_DB]
Figure 5‑25‑2: OPGW DB Schema.
[bookmark: _Toc219600923][bookmark: _Toc284347637]Type
Sub-system (package)
[bookmark: _Toc284347638]Purpose
See §6.
[bookmark: _Toc219600924][bookmark: _Toc284347639]Function
This component is in charge of providing the functions for querying and permanently storing users and orders requests.
[bookmark: _Toc219600925][bookmark: _Toc284347640]Subordinates
DB - DB Util
DB - HSQLDBNone
[bookmark: _Toc219600926][bookmark: _Toc284347641]Dependencies
HSQLDB shall be up and running.None
[bookmark: _Toc219600927][bookmark: _Toc284347642]Interfaces
Inputs:
· Read User DatabaseJDBC access [Discrete flow]
· Update Order Database [Discrete flow]
· Read Order Database [Discrete flow]
· Update User Database [Discrete flow]
Outputs:
· ** None **
[bookmark: _Toc219600928][bookmark: _Toc284347643]Resources
[bookmark: _Toc219600929]See §4.4 and §4.5.
[bookmark: _Toc284347644]References
[RD-01]
[bookmark: _Toc219600930][bookmark: _Toc284347645]Processing
See §5.4.8None.
[bookmark: _Toc219600931][bookmark: _Toc284347646]Data
This package stores:
· Several database tables for holding minimal user profile information (§5.4.7)
· A Database table (§5.4.7) needed to store HMA orders which need asynchronous notification.

[bookmark: _Ref251159137][bookmark: _Toc284347647]
OPGW_Security Layer
[image:]
Figure 5‑3: Security Layer Architecture.
This component is in charge of providing all functions related to the security of the protocol i.e.:
· SAML Token parsing
· Encryption
· Decryption
· Digital Signature Verification
· Digital Signature Preparation
This component includes the following classes:
· SL - Signature: it is the component used to create a digital signature to put into the response to send to the client. This module is called when an order notification has to be sent. In fact in that case the signature of OPGW must be included in the asynchronous notification.
· SL - Encrypter: it is the component used to encrypt the message to send to the client. This module is called when an order notification has to be sent. In fact in that case a signed and encrypted SAML Token must be included in the asynchronous async notification.
· SL - Dencrypter: it is the component used to decrypt the message received by the client. This module is called for decrypting the SAML Token of each incoming message apart from GetCapabilititesGetCapabilities.
· SL - VerifySignature: it is the component used to verify the signature included in the SAML Token of incoming requests.

These functions are implemented using the security functionalities provided by the Apache XML Security Java library [RD-06].
[bookmark: _Toc251783992][bookmark: _Toc284347648]Type
Sub-system (package)
[bookmark: _Toc284347649]Purpose
See §6.
[bookmark: _Toc284347650]Function
This component is in charge of providing the functions for security management.
[bookmark: _Toc284347651]Subordinates
SL – Encrypter
SL - Dencrypter
SL - Signature
SL - VerifySignatureNone
[bookmark: _Toc284347652]Dependencies
None.
[bookmark: _Toc284347653]Interfaces
Inputs:
· decrypt SAML Token [Discrete flow]
· encrypt SAML Token [Discrete flow]
· key [Discrete flow]
· create signature [Discrete flow]
· verify signature [Discrete flow]
Outputs:
· ** None **
[bookmark: _Toc284347654]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347655]References
[RD-06]
[bookmark: _Toc284347656]Processing
See §5.4.8.
[bookmark: _Toc284347657]Data
None.

[bookmark: _Toc284347658]extractProductMapping.py
It is a stand-alone application (python script) which is in charge of:
· extracting the order options from the whole set of configuration parameters stored into EOLI SA ServiceDirectory.xml configuration file
· writing the extracted data on XML file.
[bookmark: _Toc284347659]Type
Script Python.
[bookmark: _Toc284347660]Purpose
See §6.
[bookmark: _Ref284321275][bookmark: _Toc284347661]Function
This script is in charge of parsing the ServiceDirectory.xml configuration file (EOLI SA 6.x) and extracting from it the configured EOLI XML order options.
[bookmark: _Toc284347662]Subordinates
None
[bookmark: _Toc284347663]Dependencies
None
[bookmark: _Toc284347664]Interfaces
Inputs:
· ServiceDirectory.xml [Discrete flow]
Outputs:
· productMapping.xml [Discrete flow]
[bookmark: _Toc284347665]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347666]References
None.
[bookmark: _Toc284347667]Processing
See §5.4.9.3.
[bookmark: _Toc284347668]Data
None

[bookmark: _Toc284347669]
OPGW Test Kit
This is a package of tools supporting the testing of OPGW software.
It is composed of:
· OPGW_Client: stand-alone Java application in charge of sending OSEO and EOLI requests to a specified server.
· OPGW_TestTool: stand-alone Java application in charge of implementing all test cases and procedures described in the OPGW SVS document.
· OPGW_OSEO_AsyncClient: it is a web service implemented using AXIS2 implementing the asynchronous operations of the OSEO protocol (e.g. SubmitResponse).
They re-use some of the functions implemented in OPGW_Common component (e.g. OSEO_Client, EOLI_Client, etc.).

Figure 5‑3: OPGW Test Kit architecture.
[image:]
[bookmark: _Toc284347670]Type
Package of Java applications.
[bookmark: _Toc284347671]Purpose
See §6.
[bookmark: _Ref284340633][bookmark: _Toc284347672]Function
· OPGW_Client
· To send the following EOLI XML requests:
· processProductOrderRequest
· processAcquisitionOrderRequest
· processOrderMonitorRequest
· processSearchRequest
· processPresentReques
· To send the following OSEO requests:
· GetCapabilities
· GetOptions
· GetQuotation
· Submit
· GetStatus
· Cancel
· DescribeResultAccess
The request messages are read from file and received responses are written on file as well.
· OPGW_TestTool
It generates / reads request messages and then sends them to the server under test. Received responses are checked against the schema and against the assertions foreseen for the specific test.
There is a 1:1 mapping between SVS test procedures and messages and the test executed by the Test Tool.
The test execution is completely automatic and the result of the test execution is reported on the shell.
· OPGW_OSEO_AsyncClient
It is a Web Service, generated from the OSEO WSDL using Netbenas V6.9.1 + AXIS2. It accepts the OSEO asynchronous messages:
· GetQuotationResponse
· SubmitResponse
· CancelResponse
It does schema checks on received messages, check the SAML Token nad log the messages on disk.
[bookmark: _Toc284347673]Subordinates
· OPGW_Client
· OPGW_TestTool
· OPGW_OSEO_AsyncClient
[bookmark: _Toc284347674]Dependencies
None
[bookmark: _Toc284347675]Interfaces
None.
[bookmark: _Toc284347676]Resources
See §4.4 and §4.5.
[bookmark: _Toc284347677]References
None.
[bookmark: _Toc284347678]Processing
See §5.4.10.3.
[bookmark: _Toc284347679]Data
None

[bookmark: _Toc219600966][bookmark: _Toc219600967][bookmark: _Toc219600972][bookmark: _Toc219600974][bookmark: _Toc219600975][bookmark: _Toc219600985][bookmark: _Toc219600995][bookmark: _Toc219600997][bookmark: _Toc219600999][bookmark: _Toc219601001]
[bookmark: _Toc284347680]
Dynamical Model
This section describes the main scenarios supported by OPGW.

[bookmark: _Ref251812337][bookmark: _Toc284347681]Identity Management Scenario
From [AD-11], the interaction between the HMA Client and the OPGW can be summarized in this way:

[bookmark: _Toc284347755][image:]Figure 5‑45‑3: General Handling of HMA requests scenario.
· The HMA client generates a request for OPGW. The OPGW is called on HTTPS channel, including the encrypted SAML Token in the SOAP header and the service request in the SOAP body. The SAML Token includes the attributes of the minimum profile [AD-11], which includes at least:
· HMA user identifier
· Country of origin
· Organisation
· Names of projects with which user is affiliated.
· The HMA account number

· The OPGW performs decryption and checking of signature, extract the minimum profile from the SAML Token, then process the request.
OPGW does not perform any authorization checks on the requests (possible restrictions are applied from the EOLI XML Order Server on the order translated from by OPGW).
The second part of the scenario describes the asynchronous notification, which is possible in case of order submission. For sending the notification it is sufficient signing the message with the private key of the sender (i.e. OPGW) and sending the message via HTTPS. The DAIL, using the public key of the sender (OPGW) will check the signature: if the check is OK, then the HMA Client is sure that the sender is actually what it claims to be.

[bookmark: _Toc284347682]Product Ordering Scenario
This scenario summarizes all the interactions between HMA Client, OPGW, the companion OGC 06-131 catalogue and the EOLI XML Ordering Server (i.e. MUIS – DSM or M2EOS + MMOHS).
[image:]
[bookmark: _Toc284347756]Figure 5‑55‑4: EO Products ordering scenario
This scenario does not show the steps related to identity management (see §5.5.1).
Description:
1. The HMA Client issues a query to the External OGC 06-131 Catalogue, via calling the GetRecords operation and then (optionally) GetRecordById operation.
2. Once a catalogue item has been selected, the following actions are performed for ordering the product:
· The HMA Client calls the GetOptions on the chosen catalogue item
· The OPGW returns the set of preconfigured options
· From the HMA Client the user fills in all needed order options and submits the order. The HMA Client specifies to receive the notification on order completion.
· The OPGW formats an EOLI XML Ordering request according to the input request and then send it to the EOLI XML Ordering server.
· Because EOLI XML does not support asynchronous notification, then the OPGW performs polling on the status of the submitted order waiting for the order completion.
· When the order is completed the order notification is sent to the HMA Client.
· The HMA Client can ask also the status of the order calling the GetStatus operation.

[bookmark: _Toc284347683]Configuration Scenario
This scenario describes the main information items to be configured in OPGW.
[image:]
[bookmark: _Toc284347757]Figure 5‑65‑5: OPGW Configuration scenario.
As highlighted in the diagram:
· The answers to GetCapabilities (Capabilities documents) are preconfigured;
· Order options are preconfigured by accessing the configuration file, ServiceDirectory.xml.

[bookmark: _Toc284347684]Asynchronous operations
HMA Ordering ICD encompasses several asynchronous operations:
· GetQuotation (call back operation: GetQuotationResponse)
· Submit (call back operation: SubmitResponse)
· Cancel (call back operation: CancelResponse)
These operations work in this way:
The client calls one of these operations and it is allowed to specify whether:
· It has to receive only the acknowledge and no notifications;
· It has to receive the acknowledge and the final notifications when then processing of the operation is completed;
· It has to receive the acknowledgement and all notifications arising from the processing of the request.
When the client asks to be notified (via a specific flag of the request), then in the SOAP header it has to specify the message identifier (wsa:MessageID) and the reply address (wsa: ReplyTo/wsa:Address). Then whenever the server has to notify the client of some event it calls the corresponding <XXX>Response operation on the end point specified in the reply address.

[bookmark: _Toc219601012][bookmark: _Toc284347685] Internal Interfaces design
In the following section all the OPGW internal interfaces highlighted in §Figure 5‑1 are listed and described.
For each interface the following information are provided:
· Name: identifies the interface
· Type: specifies the exchange mechanism and the type of the exchanged data.
· Description: high level description of the interface.

[bookmark: _Toc219601013][bookmark: _Toc284347686]activate Ordering OSEO_ServiceCore Cclass
[bookmark: _Toc219601014][bookmark: _Toc284347687]Type
Java method call.
[bookmark: _Toc219601015][bookmark: _Toc284347688]Description
This data flow represents the calling of a Java method of the OSEO_ServiceCore Ordering Service class when the OPGW_OSEO_AxisService HMA Skeleton receives a request for the HMA Ordering Service.

[bookmark: _Toc219601047][bookmark: _Toc284347689]key
[bookmark: _Toc219601048][bookmark: _Toc284347690]Type
File
[bookmark: _Toc219601049][bookmark: _Toc284347691]Description
This file carries on the keys needed to:
· Verify the digital signature embedded from DAIL in the SAML Token
· Decrypt SAML Assertions within SAML Token sent from the DAIL.

[bookmark: _Toc284347692]decrypt SAML Token
[bookmark: _Toc284347693]Type
Java method call.
[bookmark: _Toc284347694]Description
This data flow represents the calling of a Java methodscalling of a Java method to manage decryption of SAML Token.

[bookmark: _Toc284347695]encrypt SAML Token
[bookmark: _Toc284347696]Type
Java method call.
[bookmark: _Toc284347697]Description
This data flow represents the calling of a Java methods to manage encryption of SAML Token.

[bookmark: _Toc284347698]create signature
[bookmark: _Toc284347699]Type
Java method call.
[bookmark: _Toc284347700]Description
This data flow represents the calling of a Java methods to manage creation of digital signature.

[bookmark: _Toc284347701]verify signature
[bookmark: _Toc284347702]Type
Java method call.
[bookmark: _Toc284347703]Description
This data flow represents the calling of a Java methods to manage the verification of digital signature.

[bookmark: _Toc284347704]key
[bookmark: _Toc284347705]Type
Java keystore file
[bookmark: _Toc284347706]Description
Java keystore file storing the OPGW public and private keys and the client public key.

[bookmark: _Toc219601019]Database Files
[bookmark: _Toc219601020]Type
File
[bookmark: _Toc219601021]Description
These are the files HSQLDB uses for storing its Database.
[bookmark: _Toc284344744][bookmark: _Toc284346101][bookmark: _Toc284346418][bookmark: _Toc284346736][bookmark: _Toc284347054][bookmark: _Toc284347374][bookmark: _Toc284347712]
[bookmark: _Toc219601030][bookmark: _Toc219601032][bookmark: _Toc219601035][bookmark: _Toc219601037][bookmark: _Toc219601038]HMA Ordering ICD Interface
[bookmark: _Toc219601039]Type
Web Services Calls
[bookmark: _Toc219601040]Description
This data flow summarizes all operations of HMA Ordering ICD.
[bookmark: _Toc284344750][bookmark: _Toc284346107][bookmark: _Toc284346424][bookmark: _Toc284346742][bookmark: _Toc284347060][bookmark: _Toc284347380][bookmark: _Toc284347718]
[bookmark: _Toc219601044][bookmark: _Toc284347719]JDBC access
[bookmark: _Toc219601045][bookmark: _Toc284347720]Type
JDBC calls
[bookmark: _Toc219601046][bookmark: _Toc284347721]Description
This data flow represents the access to the HSQLDB via JDBC protocol performed by Java code using JDBC API.

[bookmark: _Toc219601050][bookmark: _Toc284347722]Order Capabilities File
[bookmark: _Toc219601051][bookmark: _Toc284347723]Type
XML File
[bookmark: _Toc219601052][bookmark: _Toc284347724]Description
Preconfigured XML file specifying the Capabilities document for a specific version of HMA Ordering ICD.
OPGW shall have one file for each supported version.

[bookmark: _Toc219601053][bookmark: _Toc284347725]Order Option TableproductMapping.xml
[bookmark: _Toc219601054][bookmark: _Toc284347726]Type
XML File
[bookmark: _Toc219601055][bookmark: _Toc284347727]Description
XML file including the order options for all configured products / collections.

[bookmark: _Toc219601059][bookmark: _Toc284347728]Read Order Database
[bookmark: _Toc219601060][bookmark: _Toc284347729]Type
Java method call
[bookmark: _Toc219601061][bookmark: _Toc284347730]Description
This flow represents the call of Java methods in charge of extracting data from Order Database Tables.

[bookmark: _Toc219601065][bookmark: _Toc284347731]Read User Database
[bookmark: _Toc219601066][bookmark: _Toc284347732]Type
Java method call
[bookmark: _Toc219601067][bookmark: _Toc284347733]Description
This flow represents the call of Java methods in charge of extracting data from USER_TBL Database Table.

[bookmark: _Toc219601071][bookmark: _Toc284347734]Update Order Database
[bookmark: _Toc219601072][bookmark: _Toc284347735]Type
Java method call
[bookmark: _Toc219601073][bookmark: _Toc284347736]Description
This flow represents the call of Java methods in charge of inserting new orders or for modifying existing orders in the Order Database.

[bookmark: _Toc219601077][bookmark: _Toc284347737]Update User Database
[bookmark: _Toc219601078][bookmark: _Toc284347738]Type
Java method call
[bookmark: _Toc219601079][bookmark: _Toc284347739]Description
This flow represents the call of Java methods in charge of inserting new users or for modifying existing users in the User Database.

[bookmark: _Toc203223203][bookmark: _Toc219601080][bookmark: _Ref251151778][bookmark: _Toc284347740]
 Requirements to design components traceability

	SR Id
	SW Component Id
	Comment

	SR-OPGW-FN-001
	OPGW_CoreOPGW - Ordering Service
	

	SR-OPGW-FN-001
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-FN-001
	OPGW_CheckOrderOPGW - Support Tools
	

	SR-OPGW-FN-005
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-FN-005
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-FN-005
	OPGW - Support Tools
	

	SR-OPGW-FN-010
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-FN-010
	OPGW_ImportUsersOPGW - Support Tools
	

	SR-OPGW-FN-010
	OPGW_CheckOrder
	

	SR-OPGW-FN-020
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-FN-020
	extractProductMapping.pyOPGW - Support Tools
	

	SR-OPGW-FN-020
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-FN-030
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-FN-500
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	

	SR-OPGW-FN-500
	OPGW_SecurityLayerOPGW - Support Tools
	

	SR-OPGW-FN-510
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	

	SR-OPGW-FN-510
	OPGW_SecurityLayerOPGW - Support Tools
	

	SR-OPGW-FN-520
	OPGW_SecurityLayerOPGW - Support Tools
	

	SR-OPGW-FN-530
	OPGW_SecurityLayerOPGW - Support Tools
	

	SR-OPGW-FN-540
	N/A
	It is a requirement for the configuration of DAIL / MMOHS.

	SR-OPGW-PR-001
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-PR-010
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-001
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-010
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-020
	OPGW_CheckOrderOPGW - Support Tools
	

	SR-OPGW-IF-030
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-040
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-040
	extractProductMapping.pyOPGW - Support Tools
	

	SR-OPGW-IF-050
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-IF-060
	OPGW_CoreOPGW - Order Service
	

	SR-OPGW-IF-070
	OPGW_CoreOPGW - Order Service
	

	SR-OPGW-IF-070
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-IF-080
	OPGW_CoreOPGW - Order Service
	

	SR-OPGW-IF-080
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-IF-080
	OPGW_CheckOrderOPGW - Support Tools
	

	SR-OPGW-IF-090
	OPGW_CoreOPGW - Support Tools
	

	SR-OPGW-IF-090
	OPGW_Common
	

	SR-OPGW-IF-090
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-IF-100
	OPGW_CoreOPGW - Order Service
	

	SR-OPGW-IF-110
	OPGW_CoreOPGW - Order Service
	

	SR-OPGW-OP-001
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	Log files are generated by the Skeleton for each received request.
The inspection of log files can be done using an ASCII (or better) an XML editor.

	SR-OPGW-OP-010
	All
	

	SR-OPGW-OP-020
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	Log files are generated by the Skeleton for each received request.
The inspection of log files can be done using an ASCII (or better) an XML editor.

	SR-OPGW-RS-001
	All
	

	SR-OPGW-RS-010
	All
	

	SR-OPGW-RS-020
	All
	

	SR-OPGW-RS-030
	All
	

	SR-OPGW-DI-001
	All
	

	SR-OPGW-DI-010
	All
	

	SR-OPGW-DI-020
	All
	PQA requirement.

	SR-OPGW-SP-001
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	

	SR-OPGW-SP-001
	OPGW_ImportUsersOPGW - Support Tools
	

	SR-OPGW-PB-001
	OPGW - DatabaseHSQL DB
	

	SR-OPGW-PB-001
	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton
	

	SR-OPGW-QA-001
	All
	PQA requirement

	SR-OPGW-QA-010
	All
	Management Requirement

	SR-OPGW-RM-001
	All
	

	SR-OPGW-RM-010
	OPGW - Ordering ServiceOPGW_Core
	

	SR-OPGW-DD-001
	OPGW - DatabaseHSQL DB
	

[bookmark: _Ref251151757][bookmark: _Toc203223238][bookmark: _Toc219601106][bookmark: _Ref251151744][bookmark: _Toc284347761]Table 6‑1: OPGW Software Requirements vs. OPGW Software Components traceability matrix.

	SW Component Id
	SR Id
	Comment

	All
	SR-OPGW-OP-010
	

	All
	SR-OPGW-RS-001
	

	All
	SR-OPGW-RS-010
	

	All
	SR-OPGW-RS-020
	

	All
	SR-OPGW-RS-030
	

	All
	SR-OPGW-DI-001
	

	All
	SR-OPGW-DI-010
	

	All
	SR-OPGW-DI-020
	PQA requirement.

	All
	SR-OPGW-QA-001
	PQA requirement

	All
	SR-OPGW-QA-010
	Management Requirement

	All
	SR-OPGW-RM-001
	

	N/A
	SR-OPGW-FN-540
	It is a requirement for the configuration of DAIL / MMOHS.

	OPGW - DatabaseHSQL DB
	SR-OPGW-FN-001
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-FN-005
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-FN-020
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-IF-070
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-IF-080
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-IF-090
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-PB-001
	

	OPGW - DatabaseHSQL DB
	SR-OPGW-DD-001
	

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton
	SR-OPGW-PB-001
	

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	SR-OPGW-FN-500
	

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	SR-OPGW-FN-510
	

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	SR-OPGW-OP-001
	Log files are generated by the Skeleton for each received request.
The inspection of log files can be done using an ASCII (or better) an XML editor.

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	SR-OPGW-OP-020
	Log files are generated by the Skeleton for each received request.
The inspection of log files can be done using an ASCII (or better) an XML editor.

	OPGW_OSEO_AxisServiceOPGW - HMA Skeleton [RD-02]
	SR-OPGW-SP-001
	

	OPGW_CoreOPGW - Order Service
	SR-OPGW-IF-060
	

	OPGW_CoreOPGW - Order Service
	SR-OPGW-IF-070
	

	OPGW_CoreOPGW - Order Service
	SR-OPGW-IF-080
	

	OPGW_CoreOPGW - Order Service
	SR-OPGW-IF-100
	

	OPGW_CoreOPGW - Order Service
	SR-OPGW-IF-110
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-FN-001
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-FN-005
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-FN-010
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-FN-020
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-FN-030
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-PR-001
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-PR-010
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-IF-001
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-IF-010
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-IF-030
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-IF-040
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-IF-050
	

	OPGW - Ordering ServiceOPGW_Core
	SR-OPGW-RM-010
	

	OPGW_Core
	SR-OPGW-IF-090
	

	OPGW_Common
	SR-OPGW-IF-090
	

	OPGW_CheckOrderOPGW - Support Tools
	SR-OPGW-FN-001
	

	OPGW - Support Tools
	SR-OPGW-FN-005
	

	OPGW_ImportUsers
	SR-OPGW-FN-010
	

	OPGW_CheckOrderOPGW - Support Tools
	SR-OPGW-FN-010
	

	extractProductMapping.pyOPGW - Support Tools
	SR-OPGW-FN-020
	

	OPGW_SecurityLayerOPGW - Support Tools
	SR-OPGW-FN-500
	

	OPGW_SecurityLayerOPGW - Support Tools
	SR-OPGW-FN-510
	

	OPGW_SecurityLayerOPGW - Support Tools
	SR-OPGW-FN-520
	

	OPGW_SecurityLayerOPGW - Support Tools
	SR-OPGW-FN-530
	

	OPGW_CheckOrderOPGW - Support Tools
	SR-OPGW-IF-020
	

	extractProductMapping.pyOPGW - Support Tools
	SR-OPGW-IF-040
	

	OPGW_CheckOrderOPGW - Support Tools
	SR-OPGW-IF-080
	

	OPGW - Support Tools
	SR-OPGW-IF-090
	

	OPGW_ImportUsersOPGW - Support Tools
	SR-OPGW-SP-001
	

[bookmark: _Toc203223239][bookmark: _Toc219601107][bookmark: _Toc284347762]Table 6‑2: OPGW Software Components vs. OPGW Software Requirements traceability matrix.
ELSAGDATAMAT	TITOLO DOCUMENTO[image: FlashUno]
Telespazio spa Copyright as reported on the cover page

image4.emf
Apache

Tomcat

OrderingService

<<Web Application>>

CheckOrders

<<Java Application>>

ImportUsers

<<Java Application>>

HSQLDB

<<Jar>>

image5.emf
OrderOptions

OrderOptionDescription

orderOptionId

definition

identifier

DeliveryOption

deliveryMethod

packageMedium[0..N]

PaymentOption

paymentMethod

OrderOption

productOrderOptionsId

orderType

0..n

orderOptions

1..n 1..n

options

1..n 1..n

productDeliveryOptions

0..n 0..n

paymentOptions

SceneSelectionOption

0..n 0..n

sceneSelectionOption

0..n

OptionRequest

collectionId

ProductIdentifier

0..n 0..n

identifiers

image6.emf
Order

DeliveryInformation

ftp

e-mail

DeliveryAddress

0..1 0..1

mail

OrderSpecification

orderReference

orderRemark

orderType

packaging

11

orderSpecification

0..1 0..1

deliveryInformation

0..1 0..1

invoiceAddress

OptionValue

optionId

optionValue

SceneSelectionOptionValue

sceneCoordinates

temporalSelection

scenePosition

PaymentOptionValue

paymentMethod

creditCardInfo[0..1]

orderAccount[0..1]

OrderItem

itemId

productOrderOptionsId

orderItemRemark

deliveryMethod

packageMedium

1..n 1..n

orderItem

0..n 0..n

options

0..1 0..1

sceneSelection

0..1 0..1

payment

ProductId

collectionId

identifier

OrderItemId

11

productId

{one of them}

TaskingReqeustId

SPS_ID

{one of them}

image7.emf
UserGroup

orderAccount

(from Policy Model)

DeliveryAddress

UserId

MMOHS_ID

CARE_CMS_ID

(from Policy Model)

0..n 0..n

orderAccounts

UserAddress

image8.emf
OPGW

HMA Client

EOLI XML Order

Server

OPGW Operator

External OGC

06-131

Catalogue

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::S-

ubmitResponse

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

ServiceDirecto-

ry.xml

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::Desc-

ribeResultAccess

HMA Catalogue:-

:GetRecords

OPGW HMA Client

EOLI XML Order

Server

OPGW Operator

External OGC

06-131

Catalogue

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::S-

ubmitResponse

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

ServiceDirecto-

ry.xml

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::Desc-

ribeResultAccess

HMA Catalogue:-

:GetRecords

image9.wmf
OPGW

HMA Client

EOLI XML Cata-

logue Server

EOLI XML Order

Server

OPGW Operator

External OGC

06-131

Catalogue

ESA Order Desk

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::S-

ubmitResponse

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

EOLI XML Catalogue::proc-

essPresentationRequest

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

ServiceDirecto-

ry.xml

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::C-

ancelResponse

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::GetQ-

uotationResponse

email for

cancel

HMA Catalogue:-

:GetRecords

image10.emf
Client Machine

Client application

Server

Machine

Server Process

Network

Adapter

Network

Adapter

Computer BUS

network connection

Computer BUS

image11.emf
Component

Package A

Package B

Dependency

The dependency in a component

diagram specifies a compilation

dependency between items of the

model.

image12.emf
<InstantiatedClass>

Logical

Package

Interface

<<Interface>>

Parameter Type

Parameterized Class

Class A

attribute : attribute_type

method()

Class B

Association Relationship

Supplier Class

Client Class

Aggregation Relationship

Super Class

Sub Class A

Sub Class B

Instantiate Relationship

image13.emf
Object 1 Object 2

request an action

return a value

image14.wmf
Process

1

Data Store

External

Entity

Data Flow

Data Flow

Data Flow

image15.emf

T1

<<RelationalTable>>

T2

<<RelationalTable>>

FOREIGN_KEY

<<FK>>

image16.emf
OPGW_OSEO_Axi-

sService

1

OPGW_Core

2

Gateway Confi-

guration Data

OPGW_Common

3

Key Store

OPGW_Security-

Layer

5

OPGW_CheckOrd-

er

6

OPGW_ImportUs-

ers

7

OPGW_SchemaLib

8

extractProduc-

tMapping.py

9

HSQL DB

10

OPGW Test Kit

4

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::S-

ubmitResponse

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

activate OSEO_Se-

rviceCore class

productMapping-

.xml

Order Capabili-

ties File

Read User

Database

Update Order

Database

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

productMapping-

.xml

HMA Ordering::Desc-

ribeResultAccess

ServiceDirecto-

ry.xml

decrypt SAML

Token

key

verify

signature

JDBC access

EOLI XML Order::process-

OrderMonitorRequest

encrypt SAML

Token

create

signature

OPGW_OSEO_Axi-

sService

1

OPGW_Core

2

Gateway Confi-

guration Data

OPGW_Common

3

Key Store

OPGW_Security-

Layer

5

OPGW_CheckOrd-

er

6

OPGW_ImportUs-

ers

7

OPGW_SchemaLib

8

extractProduc-

tMapping.py

9

HSQL DB

10

OPGW Test Kit

4

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::S-

ubmitResponse

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

activate OSEO_Se-

rviceCore class

productMapping-

.xml

Order Capabili-

ties File

Read User

Database

Update Order

Database

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

productMapping-

.xml

HMA Ordering::Desc-

ribeResultAccess

ServiceDirecto-

ry.xml

decrypt SAML

Token

key

verify

signature

JDBC access

EOLI XML Order::process-

OrderMonitorRequest

encrypt SAML

Token

create

signature

image17.emf
OPGW - HMA

Skeleton

1

OPGW - Order

Service

2

Gateway Confi-

guration Data

OPGW -

Database

3

OPGW - Support

Tools

4

Key Store

Security Layer

5

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::S-

ubmitResponse

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

key

activate

Ordering Class

Order Option

Table

Order Capabili-

ties File

Read User

Database

Update Order

Database

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

Order Option

Table

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

ServiceDirecto-

ry.xml

EOLI XML Catalogue::proc-

essPresentationRequest

decrypt SAML

Token

encrypt SAML

Token

key

email for

cancel

create

signature

verify

signature

OPGW - HMA

Skeleton

1

OPGW - Order

Service

2

Gateway Confi-

guration Data

OPGW -

Database

3

OPGW - Support

Tools

4

Key Store

Security Layer

5

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

key exchange

Users_YYYYMMDD-

_HHMMSS.xml

HMA Ordering::S-

ubmitResponse

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

key

activate

Ordering Class

Order Option

Table

Order Capabili-

ties File

Read User

Database

Update Order

Database

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

Order Option

Table

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

ServiceDirecto-

ry.xml

EOLI XML Catalogue::proc-

essPresentationRequest

decrypt SAML

Token

encrypt SAML

Token

key

email for

cancel

create

signature

verify

signature

image18.emf
OS -

OrderService

1

OS - OrderHel-

per_GetCapabi-

lities

2

OS - OrderHel-

per_GetOptions

3

OS - OrderHel-

per_Submit

4

OS - OrderHel-

per_GetStatus

5

OS - OrderHel-

per_Cancel

6

OS - OrderHel-

per_GetQuotat-

ion

7

OS - OrderHel-

per_DescribeR-

esultAccess

8

activate

Ordering Class

Order Option

Table

Order Capabili-

ties File

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

Read User

Database

Update Order

Database

HMA Ordering::-

GetStatus

HMA Ordering::-

Submit

HMA Ordering::-

GetOptions

HMA Ordering::G-

etCapabilities

HMA Ordering::-

Cancel

HMA Ordering::-

GetQuotation

HMA Ordering::Desc-

ribeResultAccess

EOLI XML Catalogue::proc-

essPresentationRequest

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

HMA Ordering::-

GetQuotation

HMA Ordering::Desc-

ribeResultAccess

email for

cancel

Read User

Database

Read User

Database

Read User

Database

Update Order

Database

Read User

Database

decrypt SAML

Token

verify

signature

OS -

OrderService

1

OS - OrderHel-

per_GetCapabi-

lities

2

OS - OrderHel-

per_GetOptions

3

OS - OrderHel-

per_Submit

4

OS - OrderHel-

per_GetStatus

5

OS - OrderHel-

per_Cancel

6

OS - OrderHel-

per_GetQuotat-

ion

7

OS - OrderHel-

per_DescribeR-

esultAccess

8

activate

Ordering Class

Order Option

Table

Order Capabili-

ties File

EOLI XML Order::process-

ProductOrderRequest

EOLI XML Order::process-

OrderMonitorRequest

Read User

Database

Update Order

Database

HMA Ordering::-

GetStatus

HMA Ordering::-

Submit

HMA Ordering::-

GetOptions

HMA Ordering::G-

etCapabilities

HMA Ordering::-

Cancel

HMA Ordering::-

GetQuotation

HMA Ordering::Desc-

ribeResultAccess

EOLI XML Catalogue::proc-

essPresentationRequest

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

HMA Ordering::-

GetQuotation

HMA Ordering::Desc-

ribeResultAccess

email for

cancel

Read User

Database

Read User

Database

Read User

Database

Update Order

Database

Read User

Database

decrypt SAML

Token

verify

signature

image19.emf
TLS -

CheckOrders

1

TLS - Java Ut-

ility Classes

2

TLS - ImportU-

sersTool

3

TLS - OrderOp-

tionsConvertT-

ool

4

Users_YYYYMMDD-

_HHMMSS.xml

ServiceDirecto-

ry.xml

HMA Ordering::S-

ubmitResponse

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

Order Option

Table

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

encrypt SAML

Token

create

signature

TLS -

CheckOrders

1

TLS - Java Ut-

ility Classes

2

TLS - ImportU-

sersTool

3

TLS - OrderOp-

tionsConvertT-

ool

4

Users_YYYYMMDD-

_HHMMSS.xml

ServiceDirecto-

ry.xml

HMA Ordering::S-

ubmitResponse

Read User

Database

Read Order

Database

Update Order

Database

Update User

Database

Order Option

Table

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

encrypt SAML

Token

create

signature

image20.png
USER_ID (USER_ID)

U_USER_ADDRESS_TBL

USER_D
DELIVERY_EMAIL_ADDRESS
RECIPIENT_IDENT

co

ITEL_NUMBER

USER_D
STREET_ADDRESS
oy

STATE
POSTAL_CODE
COUNTRY
POST_BOX

USER_TBL USER_ID (USER_ID) ORDER_TBL
USER_ID ORDER_D
PASSIND REPLY_TO_URI
LaST_UPDATE MESSAGE_ID
PROVIDER LAST_UPDATE
e USER_ID (USER_ID) [U_USER_GROUP_TBL ORDER_STATUS
FIRST_NAVE SeE D NOTIFICATION_SENT
LAST_NAVE e 5Ps_ID
ORGANISATION USER_ID
DEPARTHENT ORDER_TYPE
TEL_NUMBER
FACNUMBER
EMAIL_ADDRESS

USER_ID (USERID) [y DELIVERY_ADDRESS_TBL

image21.emf
SL - Encrypter

1

SL - Decrypter

2

SL - VerifySi-

gnature

3

SL - Signature

4

decrypt SAML

Token

encrypt SAML

Token

key

create

signature

verify

signature

key

SL - Encrypter

1

SL - Decrypter

2

SL - VerifySi-

gnature

3

SL - Signature

4

decrypt SAML

Token

encrypt SAML

Token

key

create

signature

verify

signature

key

image22.emf
OPGW_Client

1

OPGW_OSEO_Axi-

sAsyncClient

2

OPGW_TestTool

3

OSEO_Server

EOLI_XML_Serv-

er

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::S-

ubmitResponse

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

EOLI XML Order::process-

OrderMonitorRequest

EOLI XML Order::process-

ProductOrderRequest

EOLI XML processAcqui-

sitionOrderRequest

processSearchR-

equest

processPresent-

Request

HMA Ordering::-

Cancel

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

GetStatus

HMA Ordering::-

Submit

OPGW_Client

1

OPGW_OSEO_Axi-

sAsyncClient

2

OPGW_TestTool

3

OSEO_Server

EOLI_XML_Serv-

er

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

Submit

HMA Ordering::-

GetStatus

HMA Ordering::-

Cancel

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::S-

ubmitResponse

HMA Ordering::C-

ancelResponse

HMA Ordering::GetQ-

uotationResponse

EOLI XML Order::process-

OrderMonitorRequest

EOLI XML Order::process-

ProductOrderRequest

EOLI XML processAcqui-

sitionOrderRequest

processSearchR-

equest

processPresent-

Request

HMA Ordering::-

Cancel

HMA Ordering::Desc-

ribeResultAccess

HMA Ordering::G-

etCapabilities

HMA Ordering::-

GetOptions

HMA Ordering::-

GetQuotation

HMA Ordering::-

GetStatus

HMA Ordering::-

Submit

image23.emf
 : HMA Client

 : OPGW

HTTPS

HTTPS

8: SubmitResponse()

7: sign with OPGW private key()

6: process the order()

1: encrypt the SAML Token with OPGW public key()

2: sign the SAML Token with the client private key()

3: Submit()

4: check the signature with the client public key()

5: decrypt the SAML Token with OPGW private key()

image24.emf
 : HMA Client

 : External OGC

06-131 Catalogue

 : OPGW : EOLI XML

Ordering Server

1: GetRecords()

2: GetRecordById()

3: GetOptions()

4: Submit()

5: productOrderRequest()

6: check for order updates

7: orderMonitorRequest()

8: SubmitResponse()

9: GetStatus()

10: orderMonitorRequest()

image25.emf
 : OPGW Operator

 : OPGW

1: set up order options

2: set up Ordering::Capabilities Document

3: load ESA GS user profiles

image3.png
),
7 TELESPAZIO

A Finmeccanica / Thales Company

__

image2.jpeg

