Ordering Services for Earth Observation Products - Abstract Test Suite
ESA Heterogeneous Missions Accessibility FollowOn - Task 4 Order

[image: image11.png]/3

con terra

con terra GmbH
Ordering Services for Earth Observation Products - Executable Test Suite
ESA Heterogeneous Missions Accessibility FollowOn - Task 4 Order (CONTRACT N. ESA/ESRIN 22508/09/I-LG)

Title
Ordering Services for Earth Observation Products - Executable Test Suite
Creator

Dr. Uwe Voges (con terra, Germany)
Issued

23/06/2010 10:12:00
Modified

28/06/2010
Subject
HMA OGC Order Services

Publisher

con terra GmbH
Type

Executable Test Suite
isReferencedBy

ESA HMA
Abstract
This document describes the Executable Test Suite (ETS) of the OGC Ordering Services for Earth Observation Products.
Contributors

Daniele Marchionni (ELSAG DATAMAT, Italy), Udo Einspanier (con terra)
Format

MS-Word 2003 (doc)

Rights

ESA
bibliographicCitation

Language

Eng
References

Coverage

World
History
	Version
	Status

	Datum
	Author(s)
	Explanation

	0.1
	Inprogress
	23/06/2010
	Uwe Voges
	Initialization and inclusion of first draft of a description of the Executable Test Suite

	0.2
	Inprogress
	29/06/2010
	Uwe Voges
	Added sections on setting up the test environment

	
	
	
	
	

Content
61
Introduction

1.1
Purpose and Scope
6
1.2
Applicable and Reference Documents
7
1.3
Definition and Acronyms
7
1.1
UML Notations
8
1.1.1
UML Class Diagrams
8
1.1.2
UML Component Diagrams
10
2
Introduction
10
3
Approach / Capabilities
13
4
Limitations
15
5
CTL Scripts
16
6
Test-Environment File-Directory
17
7
Setup Test Environment
18
8
Setup Testing and Start new Test
18

Figures
6Figure 1: Package Dependency of EO Order Specification

9Figure 2: UML Class Diagram Notations

10Figure 3: UML Component Diagram Notations

11Figure 4: EO Order Specification interfaces (types) and associated Conformance Classes

12Figure 5: Three axes defining the space of Conformance Classes

14Figure 6: Supported Conformance Classes

15Figure 7: ETS Approach

16Figure 8: CTL Scripts

17Figure 9: CTL Scripts load requests from separate files

18Figure 10: Directory Structure of Test Environment

1 Introduction

1.1 Purpose and Scope

This document describes the Executable Test Suite (ETS) of the OGC Ordering Services for Earth Observation Products. An ETS can verify that an Implementation Under Test (IUT) conforms to all relevant functional specifications. The basis for developing an executable test suite (ETS) is the Abstract Test Suite, described as Annex in [AD-04].
The assertions are gleaned from a set of specification documents; the dependencies among these specifications are shown in the figure below where each specification is represented as a UML package.

[image: image1.emf]cmp Component Model

 OGC

 GML v3.1.1

 SWECommon v0.0.0

 OWSCommon v1.0.0

 EOOrder v0.9x

(doc.id = "06-141rx")

 OASIS

 W3C

 WS-Security

 WS-Addressing

 EOUserManagement v0.0.x

(doc.id = "07-118rx")

(doc.id = "08-027")

(doc.id = "05-008rx")

(doc.id = "OGC 03-105r1")

 SOAP 1.1

 SOAP 1.2

Figure 1: Package Dependency of EO Order Specification
1.2 Applicable and Reference Documents

[AD1]
ECSS – Space Engineering Standards – Software ECSS-E-ST-40C, 6 March 2009.
[AD-02] OGC™ Catalogue Services Specification 2.0 Extension Package for ebRIM (ISO/TS 15000-3) Application Profile: Earth Observation Products OGC 06-131r6 0.2.4
07 May 2008
[AD-03] Application schema for Earth Observation products OGC 06-080r2 0.9.3 21 Jul 2008

[AD-04] Ordering Services for Earth Observation Products OGC 06-141r2 0.9.5 draft 1
13 Nov 2009

[AD-05] Proposal for HMA Follow On Task 4 – Order 1.0
13 Mar 2009

[AD-06] User Management Interfaces for Earth Observation Services OGC 07-118r4 0.0.6 29 Jan 2010
1.3 Definition and Acronyms
	AR
	Acceptance Review

	CDR
	Critical Design Review

	DAIL
	Data Access Integration Layer

	DDF
	Design Definition File

	DJF
	Design Justification File

	EO
	Earth Observation

	ESA
	European Space Agency

	FP
	Final Presentation

	HMA
	Heterogeneous Missions Accessibility

	INSPIRE
	Infrastructure for Spatial Information in Europe

	ICD
	Interface Control Document

	KO
	Kick off meeting

	OGC
	Open Geospatial Consortium

	OWL
	Web Ontology Language

	PDR
	Preliminary Design Review

	RDF
	Resource Description Framework

	SDD
	Software Design Document

	SMAAD
	Semantic-web Mediated Access Across Domains

	SRS
	Software Requirements Specification

	SSE
	Service Support Environment

	TS
	Technical Specification

	UML
	Unified Modelling Language

1.1 UML Notations
1.1.1 UML Class Diagrams

Some of the diagrams in this document are presented using the Unified Modeling Language (UML) static structure diagram. The UML notations used in this document are described in Figure 1, below

In these UML class diagrams, the class boxes with a light background are the primary classes being shown in this diagram, often the classes from one UML package. The class boxes with a grey background are other classes used by these primary classes, usually classes from other packages.

[image: image2.wmf]Association between classes

role-1

role-2

Association Name

Class #1

Class #2

Association Cardinality

Class

Only one

Class

Zero or more

Class

Optional (zero or one)

1..*

Class

One or more

n

Class

Specific number

Aggregation between classes

Aggregate

Class

Component

Class #1

Component

Class #2

Component

Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)

Superclass

Subclass #1

…………..

Subclass #2

Subclass #n

Figure 2: UML Class Diagram Notations

The following stereotypes of UML classes are often used:

<<Interface>> A definition of a set of operations that is supported by objects having this interface. An Interface class cannot contain any attributes.

<<Type>> A stereotyped class used for specification of a domain of instances (objects), together with the operations applicable to the objects. A Type class may have attributes and associations.

<<DataType>> A descriptor of a set of values that lack identity (independent existence and the possibility of side effects). A DataType is a class with no operations whose primary purpose is to hold the information.

<<CodeList>> A flexible enumeration that uses string values for expressing a list of potential values. If the list alternatives are completely known, an enumeration shall be used; if the only likely alternatives are known, a code list shall be used.

<<Enumeration>> A data type whose instances form a list of alternative literal values. Enumeration means a short list of well-understood potential values within a class.
1.1.2 UML Component Diagrams

Component diagrams are similar to class diagrams but concentrate on higher, sub-system level abstractions. Component diagrams typically contain packages, components, interfaces and their relationships.
[image: image3.emf]cmp Component Model

 Package 1

 Package 1.1

 Package 1.2

 Package 2

Figure 3: UML Component Diagram Notations
2 Introduction
A general UML model of the EO Order Service Interfaces, in the form of a class diagram is shown in Figure 5. This model shows the EO Order Service class plus five other classes with which that class is associated. An EO Order Service is a realization of an OGC Service. Each instance of the EO Order Service class is associated with two or more of these other classes, depending on the abilities included in that service instance. Each of these other classes defines one or several related operations that can be included in an EO Order Service class instance.

[image: image4]
Figure 4: EO Order Specification interfaces (types) and associated Conformance Classes
The EO Order Core type is itself an abstract class from which three concrete classes are derived. Each of these three classes do not provide new functionality but is related to a different type of order which can be handled through the operations of the base class.
In Figure 5 an instance of the EO Order Service type is a composite object that is a high-level characterization of an EO Order Service. Its constituent objects are themselves components that provide functional behaviours to address particular areas of concern. The associated classes shown in this figure are mandatory or optional for implementation as indicated by the association multiplicity in the UML diagram. Therefore, a compliant EO Order Service shall implement the OGC Service and EO Order Core classes. An EO Order Server can implement additional classes associated with the EO Order Service class. An EO Order implementation shall recognize all operations defined within each included class, and shall generate a message indicating when a particular operation is not implemented.

The five classes that can be associated with the EO Order Service class allow different OGC EO Order Services to provide significantly different abilities.

Each concrete type has one Conformance Class associated (green coloured in Figure 5 and assigned with a green dashed arrow to the type) which were defined within the Abstract Test Suite (ATS). The relatively large number of Conformance Classes result from additional attributes which span a three dimensional space within which the Conformance Classes are defined. The three axis of the space are:

The Operations: a set of mandatory (Core) operations GetCapabilities, GetOptions, Submit and GetStatus can be combined with the three optional operations (GetQuotation, Cancel, DescribeResultAccess)

· The OrderType (ProductOrder(PO), Subscription (Sub), Tasking (SPS))
· The Processing type (sybchronous, asynchronous with notification)

[image: image5.png]Operations

OrderType

Processing
(synch/asynch)

Figure 5: Three axes defining the space of Conformance Classes
Each of the following three conformance classes (“dark green” colored in Figure 5).

· EOOrderCorePO

· EOOrderCoreSub

· EOOrderCoreSPS

address the core set of synchronous operations for one specific OrderType. Supporting one or more of these conformance classes is mandatory for an HMA EO Order Server.

The following additional conformance classes test additional optional behaviour (“light green” coloured in the figure above). Support of these conformance classes is optional for an HMA server.

· EOOrderQuotationPO

· EOOrderQuotationSub

· EOOrderQuotationSPS

· EOOrderCoreAsynchPO

· EOOrderCoreAsynchSub

· EOOrderCoreAsynchSPS

· EOOrderQuotationAsynchPO

· EOOrderQuotationAsynchSub

· EOOrderQuotationAsynchSPS

· EOOrderResultAccess
· EOOrderCancel
The last two options are independent from an OrderType, they require only an orderId (and not an orderSpecificationInformation) as input parameter of their operations.
The abbreviation “Asynch” in the names mark Conformance Classes which support additional asynchronous (with notification) behaviour.

Some of the conformance classes are dependant on other conformance classes. The reason is that sometimes the output (status change) of operations in one conformance class is a precondition for being able to test the operation(s) of another conformance class
. From this point of view a test class can be seen as a Scenario.

3 Approach / Capabilities
The current ETS tests the most important test cases (Conformance Classes) which are (will be) supported by the ESA OPGW implementation (see figure below).
[image: image6.png]Model ATS2

dnteface types «types
oGGsenvice E0OrderService E00rderQuotation
+ GetCapabilties) - voi| teastoromeType 0
PolubisPs o2+ Geuotationy :void
cconfomance Giass
«tpes 0.1 E00rderQuotation(POl SublSPS)| o1
EOOrderResultAccess
o.1 v <coptions.
e E00rderQuotationasynch
DescribeResultA coess) void e . cconfomanceClasss -
N E0OrderCance! E0OrderGore E00rderQuotationAsnch(PO|SublSPS)| ;
tests ;
+ Cancel :void GetOptions) - void p—" —
Getstatus): void 0.1| EoOrderCoreAsynch | |Additionsl callback support
P 2 S e (GetQuatationResponse):
< i sening the quotation in
[case of Agmchmnousvia
' *.. |etification usage
/ -
i 8
g o1 N
: .
<option ccesiest
E0orderCancelAsynch fucesiest e
= e Adition callback support
/ E0frdercoresub (SubmitResponse) =nd fo
Y S [the client notcations about
cconfornanceGiass. aypes . « |me progressotsubmitea
E0OrderCancelAsynch s EOOrderCoreSPS ; . [omers
E0OrderCoreP O < N
tedéfor OrderType N N

Additional callback suppart
(CancelReponssy=nd to the
client natifications about the
progressof cancellation of
submitted orders.

R

 testsfor OerType

A

I

Support for
Tading

tedsfor OrderType
~

N

Figure 6: Supported Conformance Classes
The following operations / capabilities are supported by the current ETS approach (see figure below with more details):
· GetCapabilities

· GetOptions (for predefined Coll/PO/Sub/SPS)
· Submit / GetStatus / DescribeResultAccess tested within Scenario

· Submit (No communication with Catalogues or SPS (Product-ID must a priori be known)
· GetStatus
· Follows a Submit request
· with repeat-test: to test if status changes to “completed” within a predefined timeframe
· DescribeResultAccess: optionally follows the GetStatus test cases

· Cancel Test Case included although not supported by OPGW

[image: image7]
Figure 7: ETS Approach
There is a parameter available within the test cases to differentiate between testing HMA Order versions 0.9.4 and 0.9.5r3. Different ctl-functions are “outsourced“ for requesting specific parts of the Capabilities document.
4 Limitations
Because of limited resources and unavailability of testing asynchronous operations by current TEAMEngine the current ETS has different limitations:

· no full implementation of ATS

· concentrates on test cases which can be tested against OPGW. This means that e.g. GetQuotation is not supported
· no support for arbitrary Orderspecifications which are automatically created from GetOptions response: uses predefined OrderStructures / SceneSelections

· no testing UserManagement support
· Submit with additional asnych (notification) test case not available
5 CTL Scripts

The following figure describes the structure of the .ctl-scripts . This includes the dependancy of the ctl-files (which ctl-file is called via call-test or call-function by which ctl-file) and a description which ctl-file implements which test cases.
[image: image8.png]CC_EOOrderCore.ctl

EOOrderCoreGetCapabilities.ctl > ATS A3
EOOrderCoreGetOptions.ctl > ATSA3.12,A313
EOOrderCoreSubmitGetStatusDescResult.ctl > ATSA314 > A319

EOOrderCoreGetStatyis.ctl > ATS A3.1.10 --> A3.1.13

EOOrderDescribeResultAccess.ctl > ATS A3.34
_c OOrderCancel.ct > ATS A341A342

Java_functions.ctl — > call-test

— call-function

» Implements test case

Figure 8: CTL Scripts
The requests (messages) called from within the test-scripts are outsourced in separate “request-message-files”. They will be loaded on runtime from the TEAM-Engine. The example below shows a test-script on the left and a ctl-instruction to load the request (on the right).
[image: image9.png]|| Function Submitwith SceneSelection request (os:CC_EOOrderCore-Submit ATC-3.1.9)
<l functionrams=0s:CC_EOOiarCoreSubmit ATC:318°>
<l param nme="os Sdbmit_URL">Subm,URL</tpara>
<l param name="cc.mq_di->Diecory of Messages </t para>
<t et SubmitSceneSlectonOndarD o etum>
<eicode>
<ctlmessageURLYctmessage>
<ctimessage soect="Sos Submi_URL>
<ctlmessagesce ms_dirlcimezssge>
<climessage select="ec mag_dr>

<xslvariable name="SubmitScenet

ciSupportRequest_ordert™>

<xshvarable name="ValidResponse_
<clisoap-request version="1 2" charst
<etlu><xsvalu-of slect="S0s-Submi_URL'>
>
<ciibody>
|| <xskcopy-of select="document(coGai(Sce msq_d, Hequests/submiSupportWithSceneS
ettbody>
P
<parsers: SOAPParser reum="carlert">
parsers SOAPParser>

ction_ATC_3_1_9_req xm)>)

|| et soaprequest>

<htvarable>

<uskchoose>

| <xshwhen tost="sValidResponse_l/"[locabname(=Faul>

<ctlmessage>A Soap Faul has
<xslariable name="save_tesp” selct:
<xshalue-obfalse<ashvalue-of>
| <hustuhen>
<xslwhen test="rnol(§ValidResponse_1/Fflocakname(=SubmiAck])">
<ctlmsssage>No SubmilAck relumed.</ctimsssage>
<xslvariable name="save_tesp" scloct="umeop:save_tesp(§ValidResponse_1, concat(Scc.msg_dir frespanses/submitSuppon_AT
|| <xshvatusobfaisecsstalue-ot>
| <xstwhen>

rotumed </ctlmessage>
umeapsave_tesp(SValidRespanse._1, concat(Scc.msg

responses/submitSuppon_AT

<ord: Submit senice="0S" version="7" xmins:ord="hitp ffearth.sa.int/hmalordering" xroins:ns=
I org 9Bk

<orgorderSpecifcation>

<ordardarReference>test_teB<lord orderReferance>

<ord orderRemark>This i my order<ord oderRemark>
<ord delverinformation>

<ondp>
| <ord senerhdiress>tp imysenerciond senverAddress>
| <ontuserd>udocorg userd>

<orduserPasswardtssi<lorduserPassward>

<ord drectory>orderdir</ord iectory>

ord p>
<ortmail>

| <k-Optonal->

| <ont racpient>Udo Einsparier<lord recpiert>

<-Optonal->
<ord companyRef>con
<+-Optionsl-—>
<o postalAddress>
<ord steetAdiress>Martin Lther King Weg 24</ord strastAddress>
<ordcty>Minstarclordciy>
<ord sate>NRW<lord state>
<ord postalCode>4B155<ord postalCode>
<ord counry>Germany <ord county>
<ord postBox>postbox!23</ord postBor>
o postaladaress>
<-Optionsl
<ord telephoneNumbers +492517 474404 <lors
<-Optional
| <ors facsimieTelaphonsNumbers +492517474100<ord facsimieTelaphansumber>
ord mail>
<-Optional >
<orte-maibu insps
<-Ogtional >
<ordecenerAddrossoinvald eloment</ord receiverAddress>
o delweryiformation>
<t-Optiona >

<ordimeiceAddress>

ra<lors companyRet>

r@contens de<lord e mai>

Figure 9: CTL Scripts load requests from separate files
6 Test-Environment File-Directory
The “ETS”-directory can be found as a subdirectory of the whole test-environment (TEAMengine) file-directory-structure. It is structured as follows:

· the “ETS” directory itself includes the CTL scripts

· the “messages/requests”-directory includes the actually used requests (copied from a “messages” subdirectory.

· the separate subdirectory “EUMETSAT” includes the EUMETSAT 0.9.4 requests
· the separate subdirectory “ESA” includes the DATAMAT / ESA / OPGW 0.9.5r3 requests

· the “messages/responses”-directory includes the response XML docs from tests

· the directories “schema_0.9.4” / “schema_0_9_5r3” include order xml schemas used for validation of requests / responses

[image: image10.png]& (2 TerradueTEAM-Engine
= 2 apps
& D engine
[SE=
(ST

12 resources.

ST
2 docs
a5
D
= (2 messages.
= 2 requests
[S1=1
12 EUMETSAT
122 responses.
1 schema 0.9 4
1 schema 0.9 513

{ElReadezpreparesTesting £t
[@)ete manc

[@)ets_cC-E00rdercancec
[2)ts_EoOrderSibriGetStausDescrbeResit. i
[0 ts_EoOrderCoratetSiatusc
[)ets_cCE0Ordercare.ct
[6)ts_EoOrdergetoptinsict
[8)ts_EoOrdrCoresetCapabtios i
[6)ts_EoOrdeDesarboRestpccess

[t iava_functions. i

[2)ts_apod repeat_sxanpe.ct

= fnctonsml

E-

Sieg
Sischem.
imessages

(Dschema ¢

218
58
23k8
ke
19%8
L
23k8
0ke
68
Er
1068
68
7%

Textdokument
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
CTLDatei
XML-Dokument
XML-Dokment
File Folder
File Folder
File Folder
File Folder

Figure 10: Directory Structure of Test Environment

7 Setup Test Environment
Setting up the TEAMEngine for testing is easy:

1. Copy the whole test-environment including the “ETS” subdirectory to your system.

2. Adapt test.bat in TEAMEngine\bin to your needs: especially change the JAVA_OPTS values for http.proxyHost, http.proxyPort and http.nonProxyHosts to your needs.

8 Setup Testing and Start new Test
Important Note: This ETS currently supports for the HMA Order Services for Earth Observation Products (OGC 06-141) the versions “0.9.5r3” and “0.9.4. Although the setting for the "version" parameter can be different: “0.9.5”, “0.9.5r3”, “1.2.0” -> as far as not set to “0.9.4” version 0.9.5r3 will be tested. Setting it to “0.9.4” will start testing version 0.9.4 in a specific EUMETSAT specific constellation , e.g. no SPS, Cancel support,…

1. Adapt at minimum the following request messages in \ETS\messages\requests to satisfy your needs (in all requests the correct version has to be adapted to one of "0.9.4" or some version you support like "0.9.5r3" or "0.9.5" or "1.0.0"):
· if PO-Orders supported: adjust ATC_3_1_2_I_getOptions4POok_req.xml

· if Subscriptions supported: adjust ATC_3_1_2_II_getOptions4Subok_req.xml

· if for future products or tasking requests (SPS) supported: adjust ATC_3_1_2_III_getOptions4SPSok_req.xml

· adapt ATC_3_1_4_submitWrongPId_4_req.xml (possibly only needed to change the version id)

· adapt ATC_3_1_5_submitInvalidStructuredRequest_req.xml (possibly only needed to change the version id)

· adapt ATC_3_1_6_submitIncorrectOrderOptions_req.xml

· ATC_3_1_7_submitSupportInvalidNotificationStatus_req.xml (possibly only needed to change the version id)

· if PO-Orders supported: adjust ATC_3_1_8_submitSupportPO_req.xml

· if Sub-Orders supported: adjust ATC_3_1_8_submitSupportSub_req.xml

· if SPS-Orders supported: adjust ATC_3_1_8_submitSupportSPS_req.xml

· if PO-Orders supported: adjust ATC_3_1_9_submiSupportPOWithSceneSelection_req.xml

· if Sub-Orders supported: adjust ATC_3_1_9_submiSupportSubWithSceneSelection_req.xml

· if SPS-Orders supported: adjust ATC_3_1_9_submiSupportSPSWithSceneSelection_req.xml

· if Cancel supported: adjust ATC_3_4_submit4Cancel_req.xml
2. Adapt ets_main.ctl in \ETS\:

· Adapt the HTTP POST SOAP endpoint of the Order Service Provider under test: variable “sp.endpoint.HTTP.url”
· Adapt the path to the “messages” directory: variable “cc.msg_dir”
· set the correct value for the variable “cc.testversion” (Version supported by your implementation).This is the version name used within requests which are not outsourced into the requests directory. Setr it to "0.9.5r3" or "0.9.5" or "1.0.0" ("0.9.4" is for the EUMETSAT implementation only).

· Adapt the link (URL) to the xml schema of the order specification supported by your order version (for version see the setting before): variable “cc.orderschema_URL”
3. Be sure that your capabilities document is correctly defined and accessible
For running a new test start “run.bat” within the TEAMEngine-Root-Directory.

� Dublin Core Metadata Elements (s. http://www.dublincore.org)

� in progress, final, reviewed

� This can also happen for operations within the same conformance class, like Submit and GetStatus.

Ordering Services for Earth Observation Products - Abstract Test Suite : ESA Heterogeneous Missions Accessibility FollowOn - Task 4 Order <Status>
Datei: HMAFO-TN-0015-CONTERRA - Order Conformance and ATS.doc - Version 9 vom 23. Juni 2010 - Gedruckt: 01.03.10 09:31
Autor: Dr. Uwe Voges (con terra, Germany)
23. Juni 2010
Seite xii

[image: image12.wmf]class Class Model ATS2

«type»

EOOrderService

«interface»

OGCService

+

GetCapabilities() : void

«type»

EOOrderCore

+

GetOptions() : void

+

GetStatus() : void

+

Submit() : void

«type»

EOOrderQuotation

+

GetQuotation() : void

«type»

EOOrderCancel

+

Cancel() : void

«type»

EOOrderResultAccess

+

DescribeResultAccess() : void

Additional callback support

(GetQuotationResponse):

sending the quotation in

case of Asynchronous via

Notification usage.

Additional callback support

(SubmitResponse):send to

the client notifications about

the progress of submitted

orders.

Additional callback support

(CancelResponse):send to the

client notifications about the

progress of cancellation of

submitted orders.

«option»

EOOrderCancelAsynch

«option»

EOOrderQuotationAsynch

«option»

EOOrderCoreAsynch

«type»

EOOrderCorePO

«type»

EOOrderCoreSub

«type»

EOOrderCoreSPS

Support for

Product Orders

Support for

Subscriptions

Support for

Tasking

«conformanceClass»

EOOrderCoreSPS

«conformanceClass»

EOOrderCoreSub

«conformanceClass»

EOOrderQuotation(PO|Sub|SPS)

«conformanceClass»

EOOrderQuotationAsnch(PO|Sub|SPS)

«conformanceClass»

EOOrderResultAccess

«conformanceClass»

EOOrderCancel

«conformanceClass»

EOOrderCancelAsynch

«conformanceClass»

EOOrderCorePO

«conformanceClass»

EOOrderCoreAsynch(PO|Sub|SPS)

0..1

tests for OrderType

Sub

tests

0..1

0..1

tests for OrderType

SPS

1

tests for OrderType

PO|Sub|SPS

0..1

includes test

tests for OrderType

PO

0..1

0..1

tests

[image: image13.png]Synchranous /
Asynchronous (with
Notification)

Modes

EOOrderCore(PO|Sub|SPS)

GetCapabilities

GetOptions
L ro
L, su
L ses

Submit
L ro
L, su
L sps

——> Wait (repeat-test)

GetStatus

L ordersearch
L orderRetrieve

EOOrderResultAccess

DescribeResultAccess

L orderid

green =finished

red = currently not possible

Submit

L predefinea (Config)

OrderSpecification
Cancel
L orderid
——> Wait(repeat-test)

GetStatus

L orderRetrieve

Predefined (Corfig)
Collectionld /
Productld

Predefined (Corfig)
OrderSpecifications
including Scene-
Selectians

Independant
Structure Tests /
ErrorHandling invalid
requests

To be executed within a
scenario: GetStatus request
depending on Subrmit results
Structure Tests

Testing correctness of
results,

ErrorHandling invalid
requests

To be executed within a
scenario: GetStatus request
depending on Cancel results
Structure Tests

Testing correctness of

results

_1000170285.doc

Association between classes

role-1

role-2

Association Name

Class #1

Class #2

Association Cardinality

Class

Only one

Class

Zero or more

Class

Optional (zero or one)

1..*

Class

One or more

n

Class

Specific number

Aggregation between classes

Aggregate

Class

Component

Class #1

Component

Class #2

Component

Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)

Superclass

Subclass #1

…………..

Subclass #2

Subclass #n

