	[image: image11.emf]
	 HMA-T Authentication Service ADD
	iv

HMA-T
 Authentication Service
Architectural Design Document
 HMA-T Authentication Service ADD

HMAT-ADD-0002-SPB

1
18/03/2010
1
18/03/2010

P. Denis
18/03/2010
Y. Coene
18/03/2010
Y. Coene
18/03/2010

Restricted Distribution

 INFO TITLE ""
 INFO SUBJECT ""
 INFO AUTHOR ""

	Reference:

HMAT-ADD-0002-SPB
	[image: image1.wmf]

	Issue:

1 - 18/03/2010
	

	Revision:

1 - 18/03/2010
	

	Distribution Code:

Restricted Distribution
	

	

	HMA-T

	

	 Authentication Service

	

	Architectural Design Document

	
	
	

	Prepared by:
	
	

	P. Denis
	
	

	18/03/2010
	
	

	Verified by:
	
	

	Y. Coene
	
	

	18/03/2010
	
	

	Approved by:
	
	© Spacebel s.a.

	Y. Coene
	
	

	18/03/2010
	
	

	

	Abstract
	

	
	The present document covers the architectural design of the Security Token Service in HMA

	

	Keywords
	

	
	identity, authentication, SAML, token, assertion, requirement

	

	Contract
	

	Contractual
	:
	(

	Contract issuer
	:

	ESRIN

	Contract n°
	:
	20348/07/I-OL

	

	Classification
	

	General Public
	:
	

	Industry Programme
	:
	(

	Restricted Dispatching Programme
	:
	

	Confidential Programme
	:
	

	

	Configuration
	

	Configured document
	:
	(

	Non-configured document
	:
	

	

	References
	

	Reference
	:
	HMAT-ADD-0002-SPB

	Issue
	:
	1 - 18/03/2010

	Revision
	:
	1 - 18/03/2010

	Number of Pages
	:
	22

	

	Internal Distribution
	

	
	
	
	For
	

	Name
	Dept.
	Copies
	Information
	Action
	Comments

	P. Denis
	Space
	1
	
	(
	For preparation

	Y. Coene
	Space
	1
	
	(
	For verification

	Y. Coene
	Space
	1
	
	(
	For approval

	V. Demeuse
	
	1
	
	(
	For configuration

	
	
	
	
	
	

	

	External Distribution
	

	
	
	
	For
	

	Name
	Dept.
	Copies
	Information
	Action
	Comments

	P.G. Marchetti
	ESRIN
	1
	
	(
	

	
	
	
	
	
	

	

	Document Change Log
	

	Issue
	Issue Date
	Pages Affected
	Relevant Information

	1.0
	11/09/2009
	All
	Initialisation

	1.1
	18/03/2010
	All
	Replace authenticate request by RST to comply with OGC 07-118 0.1.0

Table Of Contents

11
Introduction

1.1
Purpose of the Document
1
1.2
Scope of the Document
1
1.3
Readership of the Document
1
1.4
Organisation of the Document
1
1.5
Applicable Documents
1
1.6
Reference Documents
2
1.7
Conventions
2
1.8
Glossary
2
1.9
Abbreviations and Acronyms
3
2
Software Design Overview
4
2.1
Software Static Architecture
4
3
Software Architectural Design
7
3.1
Overall Architecture
7
3.1.1
LDAPAccess Architecture
9
3.1.2
SAMLTokenUtils Architecture
10
3.1.3
EncryptionUtils Architecture
11
3.2
Software Item Components
12
3.2.1
LDAPAccess class
12
3.2.2
AuthenticationService interface
13
3.2.3
AuthenticationServiceImpl class
13
3.2.4
SAMLTokenUtils class
14
3.2.5
EncryptionUtils class
14
4
TECHNOLOGY
17
4.1
DESIGN STANDARDS, CONVENTIONS AND PROCEDURES
17
4.2
APPLIED STANDARDS
17
4.3
APPLIED TECHNOLOGIES
17
5
Software Requirements Traceability Matrix
19

List Of Figures

4Figure 1: Infrastructure high-level diagram

Figure 2: Software Static Architecture
5
Figure 3: Class diagram for Security Token Service
7
Figure 4 : Sequence diagram for successful authentication
8
Figure 5 : Class diagram for collaborators of LDAPAccess
10
Figure 6 : Class diagram for collaborators of SAMLTokenUtils
11
Figure 7 : Class diagram for collaborators of EncryptionUtils
12
Figure 8 : LDAPAccess class
12
Figure 9 : AuthenticationService interface
13

List Of tables

18Table 1: Applied Technologies

1 Introduction

1.1 Purpose of the Document

This document is the Architecture Design Document (ADD) for the Authentication Service of HMA-T.

This is a deliverable of WP3400 "Identity and Access Management" of the HMA-T project.
1.2 Scope of the Document

This document provides the architecture design of HMA-T Authentication Service. It covers the authentication functions of the Identity Management Reference Prototype. The other functions of the Identity Management Reference Prototype (policy enforcement) are covered in the Toolbox ADD (HMAT_ADD-INT).
1.3 Readership of the Document

The intended readership of this document are organisations interested in deploying or testing an authentication service as defined by the HMA Architecture Working Group.
1.4 Organisation of the Document

This document is organised as follows:

· Introduction: purpose, scope, readership, organisation of the document
· Software Design Overview
· Software Architectural Design
1.5 Applicable Documents
The following documents are applicable to the project. In the body of the text these documents are referenced as listed here below.

[AD1]
European Cooperation for Space Standardization, Space engineering Software
ECSS-E-ST-40C
06/03/2009
[AD2]
HMA – 2 proposal
HMA-2-MNG-PROP-136-08-SPPI
1.0 – 14/04/2008

[AD3]
Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)
OASIS Standard Specification
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
1.1 – 01/02/2006
[AD4]
Web Services Security: SAML Token Profile 1.1
OASIS Standard Specification
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
1.1 – 01/02/2006
1.6 Reference Documents

The following documents provide background reference. In the body of the text these documents are referenced as listed here below.

[RD1]
User Management Interface for Earth Observation Services
OGC 07-1185
0.1.0 – 05/03/2010
[RD2]
HMA Security Token Service Software Requirement Document
HMAT-SRD-0001-SPB
1.0 –05/03/2010
[RD3]
Lightweight Directory Access Protocol
http://tools.ietf.org/html/rfc4510
[RD4]
SAML, Assertions and Protocol for the OASIS Security Assertion Markup Language
http://www.oasisopen.org/committees/download.php/3406/oasis-sstc-saml-core-1.1.pdf
V1.1
[RD5]
Simple Object Access Protocol (SOAP) 1.1, W3C Note
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
V1.1 - 08/05/2000
[RD6]
Web Services Description Language (WSDL) 1.1, W3C Note http://www.w3.org/TR/wsdl
V1.1 - 15/03/2001
1.7 Conventions

None
1.8 Glossary

See [RD2]
1.9 Abbreviations and Acronyms

	ADD
	Architectural Design Document

	DAIL
	Data Access Integration Layer

	HMA
	Heterogeneous Mission Accessibility

	IdP
	Identity Provider

	PDP
	Policy Decision Point

	PEP
	Policy Enforcement Point

	RST
	Request Security Token

	SAML
	Security Assertion Markup Language

	SOAP
	Simple Object Access Protocol

	STS
	Security Token Service

	WSDL
	Web Service Definition Language

	XACML
	eXtensible Access Control Markup Language

	XML
	eXtensible Markup Language

	
	

2 Software Design Overview
In accordance with [RD1] a Service Provider (Ground segment) components receiving Web service requests should be able to identify who issued the request and react accordingly; so in [RD1] the following approach is proposed:

1) An authentication Web service (accepting a user identifier password and optionally his identity provider) returns a SAML token which authenticates the user to the client (i.e. Web service consumer). This authentication web service may federate the identity within the circle of trust but for the interface context this is irrelevant as the federated identity request would be identical to the initial request.

2) Each subsequent service request by the client (Web service consumer) is to include the SAML token in the SOAP header in the way described below.

3) Each service provider accepts service requests only via a policy enforcement point (PEP). The PEP decides based on the content of the message body, the contents of the message header (including authentication token) and the context (i.e. applicable policies) whether to accept or to refuse the service request or reroute it.

The Security Token Service implements the item 1) of the proposed approach covering the requirements expressed in [RD2]. The following figure illustrates how the software parts implemented in this project fit into the HMA infrastructure.
[image: image11.emf][image: image2.emf]
 Supported Role

1 Figure : Infrastructure high-level diagram
2.1 Software Static Architecture
This section provides an overview of the Security Token Service static architecture.

The Security Token Service relies on two data stores:

· a LDAP User Registry: contains attributes of all HMA users
· a keystore: file containing the keys to be used for the signature and encryption of the responses

In the context of the authentication operation, these data stores are accessed in a read-only mode and the population of these data stores are, in essence, a configuration activity of HMA Security Token Service.

The static architecture of Security Token Service is made up of several software layers that are depicted on the following figure.

[image: image3]
2 Figure : Software Static Architecture
The SOAP Engine manages the handling of authentication SOAP requests and SOAP responses. It dispatches the requests to the Security Token Service Component, which performs the actual authentication processing. The protocol used to convey SOAP message to Authentication Web Service is HTTPS.
The Security Token Service Component relies on a Java Platform to implement the authentication operation. It uses

· Java Naming package to authenticate the given user in the LDAP user registry and to retrieve its attributes,
· OpenSAML package to build the SAML token from user attributes,
· Apache XML Security package to sign and encrypt the SAML token,
· Java Security package to retrieve private and public keys from the keystore, used in the afore-mentioned signature and encryption steps.
3 Software Architectural Design
3.1 Overall Architecture
The architecture of Security Token Service component is made up of the following Java components:

· AuthenticationService interface : defines the signatures of all the operations provided by Security Token Service; it is used to publish these operations as a web service.

· AuthenticationServiceImpl class : implements the AuthenticationService interface, i.e. it defines the implementation of all authentication operations.

· LDAPAccess class : provides access methods to LDAP registry; it encapsulates Java naming package.

· SAMLTokenUtils class : provides methods to build a SAML token; it encapsulates OpenSAML package.

· EncryptionUtils class : provides methods to sign and encrypt SAML token; it implements the algorithms and retrieval of keys; it encapsulates Apache XML security package.

The WSDL file describing the Security Token Service is provided in annex A.

The following UML class diagram represents these classes and interfaces with their respective relationships.

[image: image4.wmf]AuthenticationService

<<interface>>

+authenticate(userId: String, password: String): OMElement

AuthenticationServiceImpl

+authenticate(user: String, password: String): OMElement

LDAPAccess

+authenticate(userId: String, password: String): UserData

org.apache.axiom.om.OMElement

SAMLTokenUtils

+buildSAMLToken(userData: UserData): OMElement

EncryptionUtils

+cipherElement(String targetEntity, Document document, Element element): void

+signElement(Document document, Element element): void

1

1

1

Figure 3: Class diagram for Security Token Service
The three classes that support AuthenticationServiceImpl (LDAPAccess, SAMLTokenUtils and EncryptionUtils) use themselves several interfaces or classes. This is described in the following subsections.

AuthenticationServiceImpl maintains references to instances of classes where it makes sense to keep initialized data, in order to avoid overhead of rebuilding objects at each operation. These are:

· an instance of LDAPAccess, which internally manages the connection to LDAP registry,

· an instance of EncryptionUtils that keeps track of the keys of the UMG,

· an instance of SAMLTokenUtils.

The following UML sequence diagram shows the scenario of a successful RST with password, with the steps of matching in LDAP directory, building, signing and encryption of SAML token.

 [image: image5.wmf] : Authentication Client

 : AuthenticationServiceImpl

 : LDAPAccess

 : SAMLTokenUtils

 : EncryptionUtils

1 : authenticate()

2 : authenticate()

3 : check matching and retrieve data()

4 : user data

5 : buildSAMLToken()

6 : SAML token

7 : signElement()

8 : signed SAML token

9 : cipherElement()

10 : encryped signed SAML token

11 : encryped signed SAML token

Figure 4 : Sequence diagram for successful authentication

The steps are the following ones.

1) the STS client issues an RST with user id x and password p; this is targeted to the instance of AuthenticationServiceImpl, through the Axis2 layer managing SOAP message;

2) the instance of AuthenticationServiceImpl calls the authenticate method of the LDAPAccess with x and p;

3) the LDAPAccess instance checks the matching of x and p with an entry of the LDAP directory and retrieve the associated user data;

4) the user data is returned to the AuthenticationServiceImpl instance

5) the instance of AuthenticationServiceImpl calls the buildSAMLToken method of the SAMLTokenUtils, providing the retrieved user data;

6) a SAML token, in clear text, is returned;

7) the instance of AuthenticationServiceImpl calls the signElement method of the SAMLTokenUtils, providing the SAML token in clear text;

8) a signed SAML token in clear text is returned;

9) the instance of AuthenticationServiceImpl calls the cipherElement method of the SAMLTokenUtils, providing the signed SAML token in clear text;

10) an encrypted signed SAML token is returned;

11) the encrypted signed SAML token is returned to the client.

For a successful RST with signature the steps are as follows:
12) the STS client issues an RST with user id x and signature s; this is targeted to the instance of AuthenticationServiceImpl, through the Axis2 layer managing SOAP message;

13) the instance of AuthenticationServiceImpl calls the isRSTSignatureValid method of the EncryptionUtils, which returns True;

14) the instance of AuthenticationServiceImpl calls the getLdapAttributes method of the LDAPAccess with x;

15) the user data is returned to the AuthenticationServiceImpl instance

16) the instance of AuthenticationServiceImpl calls the buildSAMLToken method of the SAMLTokenUtils, providing the retrieved user data;

17) a SAML token, in clear text, is returned;

18) the instance of AuthenticationServiceImpl calls the signElement method of the SAMLTokenUtils, providing the SAML token in clear text;

19) a signed SAML token in clear text is returned;

20) the instance of AuthenticationServiceImpl calls the cipherElement method of the SAMLTokenUtils, providing the signed SAML token in clear text;

21) an encrypted signed SAML token is returned;

22) the encrypted signed SAML token is returned to the client.

3.1.1 LDAPAccess Architecture

The class LDAPAccess provides access methods to LDAP registry; it encapsulates Java naming package and all the details of LDAP connexion and data access. It uses

· javax.naming.directory.DirContext interface: the directory service interface, containing methods for examining and updating attributes associated with objects, and for searching the directory.

· javax.naming.directory.InitialDirContext class: implementing the above-mentioned interface.

The following UML class diagram represents the relationships between these classes and interfaces.

[image: image6.wmf]LDAPAccess

+authenticate(userId: String, password: String): Attributes

javax.naming.directory.InitialDirContext

javax.naming.directory.DirContext

Attributes

Figure 5 : Class diagram for collaborators of LDAPAccess

3.1.2 SAMLTokenUtils Architecture

The class SAMLTokenUtils provides a method to build a SAML token. It hides the details of OpenSAML library.

The following UML class diagram represents the relationships between these classes and interfaces.

[image: image7.wmf]org.opensaml.Configuration

org.opensaml.xml.XMLObjectBuilderFactory

org.w3c.dom.Element

SAMLTokenUtils

+buildSAMLToken(userData: Attributes): OMElement

org.opensaml.saml1.core.Assertion

org.opensaml.common.SAMLObjectBuilder

org.opensaml.xml.io.Marshaller

Attributes

Figure 6 : Class diagram for collaborators of SAMLTokenUtils

3.1.3 EncryptionUtils Architecture

The class EncryptionUtils provides methods to sign and encrypt SAML token.

The following UML class diagram represents the relationships between these classes and interfaces.

[image: image8.wmf]java.security.KeyStore

org.apache.xml.security.encryption.XMLCipher

EncryptionUtils

+cipherElement(String targetEntity, Document document, Element element): void

+signElement(Document document, Element element): void

org.w3c.Document

org.apache.xml.security.signature

-tokenCipher

1

-keyCipher

1

javax.security.cert.X509Certificate

javax.crypto.KeyGenerator

keyGenerator

1

keystore

1

java.security.PrivateKey

privateKey

1

org.w3c.dom.Element

Figure 7 : Class diagram for collaborators of EncryptionUtils
3.2 Software Item Components
3.2.1 LDAPAccess class

The LDAPAccess class provides access methods to the LDAP registry where user data are stored; it encapsulates all the details of LDAP connexion and data access.

[image: image9.wmf]LDAPAccess

+authenticate(userId: String, password: String): Attributes

Figure 8 : LDAPAccess class

The operations provided by this class are described hereafter.

· authenticate(userId: String, password: String): Attributes
checks the matching of the given user id and password in the user registry; if a matching user is found, then its user data is returned; otherwise (authentication failure), the null value is returned.

· getLdapAttribute(userId: String): Attributes
if a matching user is found, then its user data is returned; otherwise (authentication failure), the null value is returned.

The LDAPAccess class owns an instance of the javax.naming.directory.InitialDirContext class.
3.2.2 AuthenticationService interface

The AuthenticationService interface defines the signatures of all the operations provided by Security Token Service; it is used to publish these operations as a web service.

[image: image10.wmf]AuthenticationService

<<interface>>

+authenticate(userId: String, password: String): OMElement

Figure 9 : AuthenticationService interface

The operations provided by this interface are described hereafter.

· RequestSecurityToken(rstSoapMsg : OMElement): OMElement

checks the matching of the given user id and password in the user registry if password element is present or check the signature if password element is absent; If a matching user is found with right password or right signature, then an encrypted SAML token with user's attributes is returned; otherwise (authentication failure), the null value is returned (TBC).

3.2.3 AuthenticationServiceImpl class

The AuthenticationServiceImpl class implements the AuthenticationService interface, i.e. it defines the implementation of all authentication operations.

The AuthenticationServiceImpl.RequestSecurityToken method is implemented by using the LDAPAccess, SAMLTokenUtils and EncryptionUtils classes. It works as follows:

23) it uses LDAPAccess.authenticate method classes to check the given credentials (user id, password) in the LDAP directory;

24) if steps 1. fails, then a null value is returned and the operation is completed;

25) if step 1. succeeds, then an instance of Attributes containing the user attributes is delivered;

26) it uses then SAMLTokenUtils.buildSAMLToken method to build a SAML Token from the Attributes instance;

27) the SAML token is signed by using EncryptUtils.signElement;

28) the signed SAML token is encrypted by using EncryptUtils.cipherElement;

29) the encrypted signed SAML token is returned.

3.2.4 SAMLTokenUtils class

The SAMLTokenUtils class provides a method to build a SAML token.

· buildSAMLToken(userData: Attributes): OMElement

builds and returns a SAML token based on the attributes of the given user data.

Note that the method delivers a SAML token in clear, without signature nor encryption.

The actual attributes put in the SAML token are configured by a configuration file which defines a mapping between LDAP names of all the attributes to be included and the actual attribute names to be used in the SAML assertions put in the token. This configuration file has therefore two purposes:

1. define the subset of SAML attributes to be included in the token

2. define the names to be used for these attributes.

Note that this configuration file has to be defined and agreed in close relationship with the activity of definition of access rules, for all the PEPs in the circle of trust of HMA. The rationale is that each PEP shall require access decision to its PDP, which in turn shall evaluate XACML rules referring to attribute names present in the received SAML token.
The buildSAMLToken method is implemented by using OpenSAML.
3.2.5 EncryptionUtils class

The EncryptionUtils class provides methods to sign and encrypt SAML token.

· cipherElement(String targetEntity, Document document, Element element): void

ciphers the given element in the given document, to be decipherable by the given target entity

· signElement(Document document, Element element): void

calculates and put a digital signature for the given element in the given document

· isRSTSignatureValid(Element element): void

check whether RST with signature has a valid signature, regarding a set of configured public keys.

The signElement method works as follows:

30) the secure hashing algorithm SHA-1 is used to digest the SAML contents;

31) the encryption RSA algorithm is then used to encrypt the digest value; the encryption with the private key of the of the UMG;

32) the public key of IdP is added to the signature.

The cipherElement method works as follows:

33) a key generation tool (javax.crypto.KeyGenerator) is used to generate a symmetric key for the AES-128 algorithm;

34) the AES-128 algorithm is used to encrypt the SAML token with the symmetric key;

35) the encryption RSA algorithm is then used to encrypt the symmetric key with the public key of the UMG;

36) the encrypted [RSA] symmetric key is joined to the encrypted SAML token.

The isRSTSignatureValid method works as follows:

37) Each configured client's public key is taken one by one and given signature is verified with this key

38) As soon as a signature verification succeeds (for one given public key), the method returns True

39) If all trials of signature verification fail (no matching public key), then the method returns False.
To support these methods, the EncryptionUtils class owns the following instance attributes:

· keystore (instance of java.security.KeyStore) : the Java Keystore (JKS) that stores the keys and certificates,

· privateKey (instance of java.security.PrivateKey): the private key of the of the UMG, used to sign the SAML token

· keyCipher (instance of org.apache.xml.security.encryptionXMLCipher): the XML cipher use to encrypt the symmetric key

· tokenCipher (instance of org.apache.xml.security.encryptionXMLCipher): the XML cipher used to encrypt the SAML token

· keyGenerator (instance of javax.crypto.KeyGenerator) : used to generate a symmetric key for the encryption of the SAML token

· clientPublicKeys (instance of List<PublicKey>) : list of configured public keys, one of which shall permit to verify the signature of RST with signature.

4 TECHNOLOGY
4.1 DESIGN STANDARDS, CONVENTIONS AND PROCEDURES

The present document follows ECSS E40 and ISO RM-ODP specifications.

The diagrams follow UML 2 conventions.

4.2 APPLIED STANDARDS

The user registry uses LDAPv3, defined by IETF RFC 4510 (see [RD3]).

The attribute names of user profile stored in LDAP directory comply with the IETF RFC 2256.

The access to LDAP directory from Java programs uses the JNDI API.

SAML 1.1 is used (see [RD4]).

The SAML Token Profile version of reference is 1.1 (using the SAML 1.0 syntax)

The SOAP version of reference is 1.1 (see [RD5]).

The WS-Security version of reference is 1.1.

The transport protocol is HTTPS.

The Web services are described with WSDL 1.1 (see [RD6])

4.3 APPLIED TECHNOLOGIES

The following table displays the products required for the implementation of the services.

	Application
	Version

	Sun Java SDK

	1.6

	OpenLDAP

	2.1.30

	OpenSAML

	1.1

	Apache Axis2

	1.4

	Apache Tomcat

	5.5 or 6.x

Table 1: Applied Technologies
5 Software Requirements Traceability Matrix
The following table shows, for each requirement of HMA Security Token Service SRD [RD2], the software component(s) of the present ADD that fulfils it.
	Requirement Id
	Software component

	HMAT-IMS-FC-010
	AuthenticationService

	HMAT-IMS-FC-020
	AuthenticationService

	HMAT-IMS-FC-030
	AuthenticationServiceImpl

	HMAT-IMS-FC-040
	AuthenticationServiceImpl, SAMLTokenUtils

	HMAT-IMS-FC-050
	SAMLTokenUtils

	HMAT-IMS-FC-060
	AuthenticationServiceImpl, LDAPAccess

	HMAT-IMS-IF-010
	SOAP Engine, AuthenticationService

	HMAT-IMS-IF-020
	SOAP Engine, AuthenticationService

	HMAT-IMS-IF-030
	SAMLTokenUtils

	HMAT-IMS-IF-040
	AuthenticationServiceImpl, LDAPAccess, SAMLTokenUtils, EncryptionUtils

	HMAT-IMS-IF-050
	AuthenticationServiceImpl, EncryptionUtils, Apache XML Security

	HMAT-IMS-IF-055
	EncryptionUtils, Apache XML Security

	HMAT-IMS-IF-060
	EncryptionUtils, Apache XML Security

	HMAT-IMS-IF-070
	EncryptionUtils, Apache XML Security

	HMAT-IMS-DS-010

	AuthenticationServiceImpl ,LDAPAccess

	HMAT-IMS-DS-020

	OpenLDAP

	HMAT-IMS-DS-030

	EncryptionUtils, Apache XML Security

	HMAT-IMS-DS-040

	-all-

	HMAT-IMS-SE-010
	OpenLDAP

	HMAT-IMS-SE-020
	OpenLDAP

	HMAT-IMS-SE-030
	EncryptionUtils, Apache XML Security

	HMAT-IMS-SE-040
	EncryptionUtils, Apache XML Security

	HMAT-IMS-SE-050
	EncryptionUtils, Apache XML Security, JKS keystore

	HMAT-IMS-SE-060
	JKS keystore

	HMAT-IMS-CO-010
	LDAPAccess

	HMAT-IMS-CO-020
	EncryptionUtils

	HMAT-IMS-CO-030
	SAMLTokenUtils

Java Platform

Java Naming

Java Security

Apache�XML Security

OpenSAML

Keystore

LDAP�User Registry

Security Token Service Component

SOAP Engine

	Restricted Distribution
© Spacebel s.a.
	
	HMAT-ADD-0002-SPB
1.1 - 18/03/2010

