1) Mode Finding with a Density Space
 [statistics]
2) Satellite Image Classification
 [image retrieval]

Christoph Rasche
Image Processing Laboratory @ ETTI
Politehnica Universitatea Bucuresti
Goal: to Locate Clusters in Point Patterns

- Clustering algorithms require to specify K or h (bandwidth)
- Mean-shift (no K):
 - but requires h
 - follows a \textit{gradient}

- \textbf{solution}:
 1) vary h (bandwidth)
 2) estimate density to be indep. of gradients
 \rightarrow operate in density space
 (not new, but not properly worked out)
Generating a Density Space
[1D example]

- Parzen window at each point [the usual statistics]
- ...for different h (win sizes)
 → bandwidth axis
Mode Finding with 3 Steps

1. Detect max & bumps for each $h \rightarrow$ clots
2. Correlate clots across h \rightarrow consistency
3. Select most consistent \rightarrow modes of distribution

\rightarrow requires a strategy/focus
e.g. global-to-local
Bimodal: 2 sources separating increasingly

- 2 Dimensions
- 1 Dimension (overestim.)
- 4 Dimensions
- 6 Dimensions (underestim.)

(general phenomenon with density estimation)
3 sources increasingly separated

detected modes

separation

<
4 sources increasingly separated

detected modes
1 source within another (a cluster within noise)

detected modes

increasing density

<
2 sources embedded, separating

detected modes
Further Confirming 2D Visually

spotted modes

→ looks very promising: not applied as grouping method yet, but use 1D density estimation
Summary Density Space

• Allows a truly non-parametric mode spotting (and probably more)
• Requires the choice of a selection strategy (focus), e.g. global-to-local
• Complex: \(O(N^2)K \) (\(K = \# \) of bandwidths)
• Works up to dimensionality ca. 5
• use the 1D density estimation already
(Satellite) Image Classification

• My preprocessing: based on contour analysis
 - Canny edge detection, edge linking
 - Curve partitioning [Rasche 2010 in Int Jrnl CV]
 - Grouping segments [Rasche, submitted]
 (density estimation used...)

• Evaluation on [Yang & Newsam 2010]: 21 Classes: agriculture, airports, intersections,... benchmark at 81% with SIFT features (histograms of image gradients): equalized and rising.
Airport

Airplanes well described by hyperbolas \((2\text{ curved segments vis-à-vis, facing away from each other})\)
Buildings

Ribbon feature is dominant \(\parallel \) (two straight segments, parallel, vis-à-vis)
Summary Classification

• Descriptor generation: relatively complex – as opposed to SIFT -, but still taking only a few seconds in Matlab (per image)

• (Other benchmarks reached: MPG7, Urban&Landscape, Caltech101)

• Representation much smaller, rel. fast matching

• For image understanding: no further preprocessing required

• Could be optimized with density estimation
Slide of Interest

• Seeking applications, e.g. taxonomy
• Object identification?
• Segmentation with density estimation?
• ...anything where structure needs to be interpreted
Density Estimation

- **Parametric:** Expectation-Maxim. (EM), Max-Likelihood (MLE)
- **Semi-Parametric:** Clustering (k-Means)
- **Non-Parametric:** Kernel Density Est. (Parzen)

→ requires selection of appropriate bandwidth \((h) \)...

...is still a parameter
Locally Adaptive Density Estimation

[Variable Bandwidth]

1) Adjustment of h to local data neighborhood
 - balloon estimator [Loftsgaarden & Quesenberry 65]
 - sample-point estimator [Breiman, Meisel & Purcell 77]
 ...does not work well for multi-modal distributions.

2) Varying of h systematically \rightarrow space
 [Minnotte & Scott 93], [Chaudhuri & Marron, 99]
 ...no obvious improvement.