OpenSearch GeoSpatial-Time and Earth Observation Extensions

Heterogeneous Mission Accessibility for Science
HMA-S Kick-Off Meeting
Thursday, January 24, 2013

Fabrice Brito (on behalf of P. Gonçalves)
Terradue S.r.l. Rome Italy
The technology: OpenSearch

- OpenSearch started in an effort built around Amazon's A9.com and now maintained in a community process at opensearch.org

- Search engines have a description document used by client applications and allows syndication of search results

- OASIS Search Web Services group is publishing searchRetrieve Operation with Bindings for SRU 1.2 and OpenSearch
 http://docs.oasis-open.org/search-ws/
The technology: OpenSearch

- OpenSearch is flexible, results can be returned as HTML interfaces or in ATOM, XML/RDF, KML, WKT, JSON….
- Directly integrated in Web Browsers
- Includes result’s paging
OpenSearch Description

• Provides metadata about the contents along with a set of URL Templates which illustrate the parameters accepted by the service and the variety of output formats in which results can be obtained

• The OpenSearch request interface is simple, consisting of a description of a HTTP GET request with a series of optional key-value parameters that can be used to constrain the search

• `<Url type="text/html" template="http://example.com/?q={searchTerms?}&pw={startPage?}"/>

http://www.google.com/?q=question
http://www.google.com/?q={searchTerms}`
<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/OpenSearch/1.1/">
 <ShortName>Web Search</ShortName>
 <Description>Use Acme.com to search the Web.</Description>
 <Tags>example web</Tags>
 <Contact>admin@acme.com</Contact>
 <Url type="application/rss+xml" template="http://acme.com/?q={searchTerms}&pw={startPage?}&format=rss"/>
</OpenSearchDescription>
<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/OpenSearch/1.1/">
 <ShortName>Web Search</ShortName>
 <Description>Use Acme.com to search the Web.</Description>
 <Tags>example web</Tags>
 <Contact>admin@acme.com</Contact>
 <Url type="application/atom+xml" template="http://acme.com/?q={searchTerms}&pw={startPage?}&format=atom"/>
 <Url type="application/rss+xml" template="http://acme.com/?q={searchTerms}&pw={startPage?}&format=rss"/>
 <Url type="text/html" template="http://acme.com/?q={searchTerms}&pw={startPage?}"/>
 <LongName>Example.com Web Search</LongName>
 <Image height="64" width="64" type="image/png">http://acme.com/websearch.png</Image>
 <Image height="16" width="16" type="image/vnd.microsoft.icon">http://acme.com/websearch.ico</Image>
 <Query role="example" searchTerms="cat"/>
 <Developer>Acme.com Development Team</Developer>
 <Attribution>Search data Copyright 2005, Acme.com, Inc., All Rights Reserved</Attribution>
 <SyndicationRight>open</SyndicationRight>
 <AdultContent>false</AdultContent>
 <Language>en-us</Language>
 <OutputEncoding>UTF-8</OutputEncoding>
 <InputEncoding>UTF-8</InputEncoding>
</OpenSearchDescription>
GeoSpatial Extension

• Specify a series of parameters that can be used to spatially constrain search results

• Provision is made to filter results by:
 • A bounding box
 • A geometry using Well Known Text
 • Within a certain radius from a given latitude-longitude point
 • Having a certain containment relation (within, overlaps, disjoint) with a geographic constraint
 • Matching a geographic name

• All geographic information in EPSG 4326 (WGS84)
GeoSpatial Extension Elements

- **geo:box** -> Geographic bounding box. The box is defined by "west, south, east, north" coordinates of longitude, latitude, in EPSG:4326 decimal degrees.

- **geo:geometry** -> Geographic area (geometry). The polygon is defined using the Well Known Text standard for geographic shapes, using EPSG:4326.

- **geo:lat, geo:lon, geo:radius** -> The latitude, longitude of a given point with a given radius.

- **geo:relation** -> Spatial relation to result set, Character String; One of "overlaps", "contains", "disjoint" (default is "overlaps").

- **geo:name** -> A string describing the location to perform the search.

The current namespace of the OpenSearch Geo Extension is:
http://a9.com/-/opensearch/extensions/geo/1.0/
Time Extension Elements

- Defines the temporal range request

- **time:start**
 Start of the temporal interval to search (RFC-3339)

- **time:end**
 End of the temporal interval to search (RFC-3339)

- RFC-3339 Example: 2008-01-01T23:43:23.00Z

- Namespace of the OpenSearch Time Extension is:
 http://a9.com/-/opensearch/extensions/time/1.0/
A search service with

```xml
<Url type="text/html" template="http://example.com/xml/?q={searchTerms?}&amp;start_date={time:start?}&amp;stop_date={time:end?}&amp;bbox={geo:box}"
```

The geospatial extension allow to formulate geospatial requests e.g. point-plus-radius, a bounding box, or a polygon

```xml
bbox={geo:box?}
```

Together with the Time extension, OpenSearch can specify time start, finish, and slices for searching data.

```xml
start={time:start?}&stop={time:end?}
```

http://example.com/xml/?bbox=6.73,36.73,18.45,47.07&start=2011-01-10&end=2011-01-12T23:59:5
ATOM Response Mappings

- Usage of ATOM elements
- GEORSS for spatial attributes
- dc:date for time ranges
- Resource linkage with the atom:link element
 - atom:link[@rel='alternate'] for metadata
 - atom:link[@rel='enclosure'] for data access services
 - atom:link[@rel='related'] to link related resources
Earth Observation Extension

- Earth observation (EO) products have specific characteristics like the orbit number, processing center and acquisition station that follow a specific logic inherent to the EO community of users of satellite datasets.

- EO product contains information regarding the:
 - Platform or satellite from where it originates (e.g. SPOT, ENVISAT)
 - The Satellite number (if exists)
 - The sensor used to acquire the data
 - The specific dataset identifier
 - The center, date and software used for the processing
Earth Observation Extension

• Focus on collection and product metadata
 • platform

 http://example.com/?q={searchTerms}&pw={startPage?} &platform={eop:platform?}
 • sensorType

 http://example.com/?q={searchTerms}&pw={startPage?} &sensor={eop:sensorType?}

 ...

 • orbitNumber, acquisitionStation, processingCentre, processingSoftware, processingDate

• Focus on dataset cross-relations
 • interferometry and correlation searches
EO Cross-Relation Searches
OGC CSW 3.0

• Must support OGC 10-032 regardless of profile (or even without)

• Provides an OpenSearch description document link in the Capabilities document (mapping the CSW query parameters that the implementation supports to the OpenSearch parameters defined in OGC 10-032)

• Implements the ATOM-Response conformance class

• The canonical response to an OpenSearch query is an ATOM document as described in OGC 10-032
Integration using ATOM
ATOM Feed and atom:link

Direct Link to the data URL using the relation "enclosure"
Current Adoption

- SEADATANET, EMSO
- ESA GRID - G-POD Catalogue
- NASA Earth Observing System Clearinghouse (ECHO)
- ESIP Federation (NASA, NOAA and USGS)
- GEO Geohazards Supersite
- GEO Web Portal with Search context passing
- Software: Geocommons, GeoNetwork, OpenLayers
- ngEO – GMES next generation of user services for EO
HMA-S Tasks

• WP4100 - Geo-Time Extensions Specifications
 • Finalize the adoption of OGC 10-032
 • Define and propose Earth Observation Extension to the OGC
 • Collection and Dataset level
 • Dataset Correlated search (including interferometry master/slave)

• WP4200 - Geo-Time Extensions Tests
 • ATS and ETS for OGC TEAM engine
 • Normative RELAX-NG schemas and Schematrom rules for OpenSearch Description and response payload
 • Informative XSD files
Contacts

Fabrice Brito – fabrice.brito@terradue.com

Pedro Gonçalves - pedro.goncalves@terradue.com

Address:
Terradue S.r.l
Tecnocenter Talenti, scala N
Via della Bufalotta, 378
00139 Roma RM
Italy
Phone: +39 06 870 905 51
Fax: +39 06 870 905 52